Referencias

Alonso, J. C. (2006a). 4 Hechos Estilizados de las series de rendimientos: Una ilustración para Colombia. Estudios Gerenciales.
Alonso, J. C. (2006b). Apuntes de álgebra matricial para un curso introductorio de econometrı́a. Apuntes de Economı́a; No. 11-2006.
Alonso, J. C. (2007). APUNTES DE ESTADÍSTICA PARA UN CURSO INTRODUCTORIO DE ECONOMETRÍA. Apuntes de Economía, 12.
Alonso, J. C. (2020a). Herramientas del Business Analitycs en R: Análisis de Componentes Principales para resumir variables. Economics Lecture Notes, 10, 1–32. https://ideas.repec.org/p/col/000559/018188.html
Alonso, J. C. (2020b). Una introducción a la construcción de WordClouds (para economistas) en R. Economics Lecture Notes, 9, 1–28. https://ideas.repec.org/p/col/000559/018187.html
Alonso, J. C. (2021). Una introducción a los Loops en R (y algunas alternativas). Economics Lecture Notes, 14, 1–18.
Alonso, J. C., & Berggrun, L. (2011). Intrducción al análisis de riesgos financiero. Ecoe Ediciones.
Alonso, J. C., & Gallo, B. E. (2013). The Day-of-the-Week Effect: The CIVETS Stock Markets Case. Journal of Applied Business and Economics, 15(3), 102–116.
Alonso, J. C., & Hoyos, C. C. (2024). Introducción a los pronósticos con modelos estadístico de series de tiempo para científico de datos (en R) (Universidad Icesi). Universidad Icesi.
Alonso, J. C., & Largo, M. F. (2023). Empezando a visualizar datos con r y ggplot2. (2. ed.). Universidad Icesi. https://doi.org/10.18046/EUI/bda.h.3.2
Alonso, J. C., & Montenegro, S. (2015). Estudio de Monte Carlo para comparar 8 pruebas de normalidad sobre residuos de mínimos cuadrados ordinarios en presencia de procesos autorregresivos de primer orden. Estudios Gerenciales, 31(In press), 253–265. https://doi.org/10.1016/j.estger.2014.12.003
Alonso, J. C., & Ocampo, M. P. (2022). Empezando a usaR: Una guía paso a paso. Universidad Icesi- In press.
Alonso, J. C., & Torres, G. (2014). Características estadísticas del índice general de la Bolsa de Valores de Colombia (IGBC) en sus primeros 10 años. Journal of Economics Finance and Administrative Science, 19(36), 45–54. http://www.sciencedirect.com/science/article/pii/S2077188614000031
Amemiya, T. (1994). Introduction to statistics and econometrics. Harvard University Press.
Anderson, T., & Darling, D. (1952). Asymptotic theory of certain "goodness of fit" criteria based on stochastic processes. The Annals of Mathematical Statistics, 23, 193–212. http://www.jstor.org/stable/2236446
Andrews, D. (1991). Heteroskedasticity and autocorrelation consistent covariant matrix estimation. Econometrica, 59(3), 817–858.
Auguie, B. (2017). gridExtra: Miscellaneous functions for "grid" graphics. https://CRAN.R-project.org/package=gridExtra
Bansal, G. (2021). Ecm: Build error correction models. https://CRAN.R-project.org/package=ecm
Belsley, D. A., Kuh, E., & Welsch, R. E. (1980). Regression Diagnostics: Identifying Influential Data and Sources of Collinearity. John Wiley & Sons, Inc. https://doi.org/10.1002/0471725153
Bernat, L. F. (2004). Diferencias salariales por género en las siete principales áreas metropolitanas colombianas. ¿Evidencia de discriminación? Investigaciones Sobre Género y Desarrollo En Colombia, 1.
Boisbunon, A., Canu, S., Fourdrinier, D., Strawderman, W., & Wells, M. T. (2013). AIC, cp and estimators of loss for elliptically symmetric distributions. arXiv Preprint arXiv:1308.2766.
Box, G. E. P., & Pierce, D. A. (1970). Distribution of residual autocorrelations in autoregressive-integrated moving average time series models. Journal of the American Statistical Association, 65(332), 1509–1526.
Breusch, T. S. (1978). Testing for autocorrelation in dynamic linear models. Australian Economic Papers, 17(31), 334–355.
Breusch, T. S., & Pagan, A. R. (1979). A simple test for heteroscedasticity and random coefficient variation. Econometrica, 47(5), 1287–1294.
Chiang, A. (1996). Métodos fundamentales de economı́a. Madrid: McGraw-Hill.
Cramér, H. (1928). On the composition of elementary errors: First paper: Mathematical deductions. Scandinavian Actuarial Journal, 1, 13–74.
Cribari-Neto, F. (2004). Asymptotic inference under heteroskedasticity of unknown form. Computational Statistics & Data Analysis, 45(2), 215–233.
Cule, E., & De Iorio, M. (2012). A semi-automatic method to guide the choice of ridge parameter in ridge regression. arXiv Preprint arXiv:1205.0686, 1–32. http://arxiv.org/abs/1205.0686
Cule, E., Moritz, S., & Frankowski, D. (2021). Ridge: Ridge regression with automatic selection of the penalty parameter. https://CRAN.R-project.org/package=ridge
Davidson, Russell and MacKinnon, J. (1993). Estimation and inference in econometrics. Oxford University Press.
Davison, A. C., & Hinkley, D. V. (1997). Bootstrap methods and their application. Cambridge university press.
Durbin, J. (1960). Estimation of parameters in time-series regression models. Journal of the Royal Statistical Society, 22(1), 139–153.
Durbin, J. (1970). Testing for serial correlation in least-squares regression when some of the regressors are lagged dependent variables. Econometrica, 38(3), 410–421.
Durbin, J., & Watson, G. S. (1951). Testing for serial correlation in least squares regression. II. Biometrika, 38(1-2), 159–178.
Farrar, T. J., & University of the Western Cape. (2024). Skedastic: Handling heteroskedasticity in the linear regression model. https://github.com/tjfarrar/skedastic
Fernandes, K., Vinagre, P., & Cortez, P. (2015). A proactive intelligent decision support system for predicting the popularity of online news. Portuguese Conference on Artificial Intelligence, 535–546.
Fox, J., & Weisberg, S. (2019). An r companion to applied regression (Third). Sage. https://socialsciences.mcmaster.ca/jfox/Books/Companion/
Frisch, R. (1933). Editor’s note. Econometrica, 1, 1.
Godfrey, L. G. (1978). Testing against general autoregressive and moving average error models when the regressors include lagged dependent variables. Econometrica, 46(6), 1293–1301.
Grömping, U. (2006). Relative importance for linear regression in r: The package relaimpo. Journal of Statistical Software, 17(1), 1–27.
Gujarati, D. N., & Porter, D. C. (2011). Econometria básica-5. Amgh Editora.
Hair, J. F. J., Black, W. C., Babin, B. J., & Anderson, R. E. (2014). Multivariate Data Analysis (7th ed.). Pearson.
Hebbali, A. (2020). Olsrr: Tools for building OLS regression models. https://CRAN.R-project.org/package=olsrr
Hlavac, M. (2018). Stargazer: Well-formatted regression and summary statistics tables. Central European Labour Studies Institute (CELSI). https://CRAN.R-project.org/package=stargazer
Hyndman, R. J., & Khandakar, Y. (2008). Automatic time series forecasting: The forecast package for R. Journal of Statistical Software, 26(3), 1–22. http://www.jstatsoft.org/article/view/v027i03
Jarque, C., & Bera, A. (1987). A test for normality of observations and regression residuals. International Statistical Review, 55(2), 163–172. http://www.jstor.org/stable/1403192
Kaplan, J. (2020). fastDummies: Fast creation of dummy (binary) columns and rows from categorical variables. https://CRAN.R-project.org/package=fastDummies
Kleiber, C., & Zeileis, A. (2008). Applied econometrics with r. Springer-Verlag. https://CRAN.R-project.org/package=AER
Koenker, R. (1981). A note on studentizing a test for heteroscedasticity. Journal of Econometrics, 17(1), 107–112.
Kolmogorov, A. N. (1933). Sulla determinazione empirica di una legge di distribuzione. G. Ist. Attuari, 89–91.
Kuhn, M. (2020). Caret: Classification and regression training. https://CRAN.R-project.org/package=caret
Kutner, M. H.; Nachtsheim, C. J.; Neter, J. (2004). Applied Linear Regression Models (4 th). McGraw-Hill Irwin.
Lê, S., Josse, J., & Husson, F. (2008). FactoMineR: A package for multivariate analysis. Journal of Statistical Software, 25(1), 1–18. https://doi.org/10.18637/jss.v025.i01
Ljung, G. M., & Box, G. E. P. (1979). The likelihood function of stationary autoregressive-moving average models. Biometrika, 66(2), 265–270.
Long, J. A. (2020). Jtools: Analysis and presentation of social scientific data. https://cran.r-project.org/package=jtools
Long, J., & Ervin, L. (2000). Using Heteroscedasticity Consistent Standard Errors in the Linear Regression Model. The American Statistician, 54(3), 217–224. http://amstat.tandfonline.com/doi/abs/10.1080/00031305.2000.10474549
Lumley, T. (2020). Leaps: Regression subset selection. https://CRAN.R-project.org/package=leaps
Lumley, T., & Heagerty, P. (1999). Weighted empirical adaptive variance estimators for correlated data regression. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 61(2), 459–477.
Newey, W. K., & West, K. D. (1987). A Simple , Positive Semi-Definite , Heteroskedasticity and Autocorrelation Consistent Covariance Matrix. Econometrica, 55(3), 703–708.
Oaxaca, R. (1973). Male-female wage differentials in urban labor markets. International Economic Review, 14(3), 693–709.
Orestes Cerdeira, J., Duarte Silva, P., Cadima, J., & Minhoto, M. (2020). Subselect: Selecting variable subsets. https://CRAN.R-project.org/package=subselect
R Core Team. (2023). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/
Redmond, M., & Baveja, A. (2002). A data-driven software tool for enabling cooperative information sharing among police departments. European Journal of Operational Research, 141(3), 660–678.
Ryan, J. A., & Ulrich, J. M. (2020). Xts: eXtensible time series. https://CRAN.R-project.org/package=xts
Schloerke, B., Cook, D., Larmarange, J., Briatte, F., Marbach, M., Thoen, E., Elberg, A., & Crowley, J. (2021). GGally: Extension to ’ggplot2’. https://CRAN.R-project.org/package=GGally
Shapiro, S. S., & Francia, R. S. (1972). An approximate analysis of variance test for normality. Journal of the American Statistical Association, 67(337), 215–216. http://amstat.tandfonline.com/doi/abs/10.1080/01621459.1972.10481232
Sheather, S. (2009). A modern approach to regression with r. Springer Science & Business Media.
Spanos, A. (1986). Statistical foundations of econometric modelling (p. 720). Cambridge University Press.
Swed, F. S., & Eisenhart, C. (1943). Tables for testing randomness of grouping in a sequence of alternatives. The Annals of Mathematical Statistics, 14(1), 66–87.
Trapletti, A., & Hornik, K. (2019). Tseries: Time series analysis and computational finance. https://CRAN.R-project.org/package=tseries
Wald, A., & Wolfowitz, J. (1940). On a test whether two samples are from the same population. The Annals of Mathematical Statistics, 11(2), 147–162.
Waldman, D. M. (1983). A note on algebraic equivalence of white’s test and a variation of the godfrey/breusch-pagan test for heteroscedasticity. Economics Letters, 13(2-3), 197–200.
White, H. (1980). A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica, 48(4), 817–838.
Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. Springer-Verlag New York. https://ggplot2.tidyverse.org
Wickham, H., & Bryan, J. (2019). Readxl: Read excel files. https://CRAN.R-project.org/package=readxl
Zeileis, A. (2004). Econometric computing with HC and HAC covariance matrix estimators. Journal of Statistical Software, 11(10), 1–17. https://doi.org/10.18637/jss.v011.i10
Zeileis, A., & Hothorn, T. (2002). Diagnostic checking in regression relationships. R News, 2(3), 7–10. https://CRAN.R-project.org/doc/Rnews/