Solução ubíqua baseada em NFC para a análise de dados turísticos em cidades inteligentes.
DOI:
https://doi.org/10.18046/syt.v13i32.2016Palavras-chave:
contexto, computação ubíqua, cidade inteligente, NFC.Resumo
O registro e a análise pormenorizados dos percursos do visitante bem como os movimentos individuais em tempo real das dezenas de milhares de visitantes pertencem a uma das mais importantes áreas de pesquisa em turismo. Para observar os movimentos turísticos, encontra-se disponível uma variedade de técnicas. Novas técnicas de monitorização estão sendo exploradas e graças aos avanços da tecnologia é possível ter em qualquer momento e desde qualquer lugar (computação ubíqua) a informação que foi usada para registrar o movimento de turistas, com alta resolução. Nesses ambientes (ambientes etiquetados) onde o usuário interage com o seu ambiente, uma tecnologia emergente conhecida como Near Field Communication [NFC] fornece uma maneira natural para a interação entre os usuários e seu ambiente. Este artigo desenvolve uma proposta ubíqua, baseada em NFC, que permite obter dados turísticos em tempo real que são analisados com o método de cadeias de Markov através de testes experimentais e estatísticas, graças a que se demonstra que o movimento de um turista é influenciado pelo estado ou local turístico onde se encontra antes de passar para outro, confirmando a hipótese que é possível capturar informação deixada pelos turistas através de ferramentas tecnológicas, e que graças ao processamento dessa informação pode obter-se um traço que mostre a atividade realizada, o mesmo que, através da sua visualização permitirá tomar decisões que promovam o turismo como parte da economia regional e nacional.
Referências
Ailisto, H., Pohjanheimo, L., Välkkynen, P., Strömmer, E., Tuomisto, T., & Korhonen, I. (2006). Bridging the physical and virtual worlds by local connectivity-based physical selection. Personal and Ubiquitous Computing, 10(6), 333-344.
Akaike, H. (2014, May). Statistical Inference and Measurement of Entropy. In Scientific Inference, Data Analysis, and Robustness: Proceedings of a Conference Conducted by the Mathematics Research Center, the University of Wisconsin—Madison, November 4–6, 1981 (p. 165). Academic Press.
Arrowsmith, C. & Inbakaran, R. (2002). Estimating environmental resiliency for the Grampians National Park, Victoria, Australia: a quantitative approach. Tourism Management, 23(3), 295-309.
Arrowsmith, C., Chhetri, P., & Zanon, D. (2005). Monitoring visitor patterns of use in natural tourist destinations. In Taking Tourism to the Limits: Issues, Concepts and Managerial Perspectives, (pp. 33-52). Amsterdam, The Netherlands: Elsevier
Asakura, Y. & Iryo, T. (2007). Analysis of tourist behaviour based on the tracking data collected using a mobile communication instrument. Transportation Research Part A: Policy and Practice, 41(7), 684-690.
Bajaj, R., Ranaweera, S. L., & Agrawal, D. P. (2002). GPS: location-tracking technology. Computer, 35(4), 92-94.
Borrego-Jaraba, F., Ruíz, I. L., & Gómez-Nieto, M. Á. (2011). A NFC-based pervasive solution for city touristic surfing. Personal and Ubiquitous Computing, 15(7), 731-742.
Buhalis, D. & Amaranggana, A. (2013). Smart Tourism Destinations. In Information and Communication Technologies in Tourism 2014 (pp. 553-564). Springer International Publishing.
Cheverst, K., Davies, N., Mitchell, K., & Friday, A. (2000). Experiences of developing and deploying a context-aware tourist guide: the GUIDE project. In Proceedings of the 6th Annual International Conference on Mobile Computing and Networking, 20-31. New York, NY: ACM.
Chon, J., & Cha, H. (2011). Lifemap: A smartphone-based context provider for location-based services. IEEE Pervasive Computing, 10(2), 58-67.
Coskun, V., Ozdenizci, B., & Ok, K. (2013). A survey on near field communication (NFC) technology. Wireless Personal Communications, 71(3), 2259-2294.
Davies, N., Cheverst, K., Mitchell, K., & Efrat, A. (2001). Using and determining location in a context-sensitive tour guide. Computer, 34(8), 35-41.
Digital Tourism Think Tank [DTTT] (2014). 2014 year in digital travel [video]. Retrieved from http://youtu.be/rJZbtg_irZU
Ducatel, K., Bogdanowicz, M., Scapolo, F., Leijten, J., & Burgelman, J.-C. (2001). Scenarios for ambient intelligence in 2010 [online]. Seville, Spain: ISTAG. Retrieved from http://www.ist.hu/doctar/fp5/istagscenarios2010.pdf
Dumont, B., Roovers, P., & Gulinck, H. (2005). Estimation of off-track visits in a nature reserve: a case study in central Belgium. Landscape and Urban Planning, 71(2), 311-321.
Egger, R. (2013). The impact of near field communication on tourism. Journal of Hospitality and Tourism Technology, 4(2), 119-133.
Fennell, D. A. (1996). A tourist space-time budget in the Shetland Islands. Annals of Tourism Research, 23(4), 811-829.
Fundación Telefónica (2011). Smart Cities: un primer paso hacia la Internet de las Cosas. Madrid, Spain: Fundación Telefónica.
Girardin, F., Vaccari, A., Gerber, A., Biderman, A., & Ratti, C. (2009). Quantifying urban attractiveness from the distribution and density of digital footprints. International Journal of Spatial Infrastructures Research, 4, 175-200
Hadley, D., Grenfell, R., & Arrowsmith, C. (2003). Deploying location-based services for nature-based tourism in non-urban environments [conference paper in Spatial Sciences Coalition Conference, Canberra-2003].
Haritaoglu, I., Harwood, D., & Davis, L. (2000). W 4: Real-time surveillance of people and their activities. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8), 809-830.
Hurtado, M. (2011). Aportes al proceso administrativo del proyecto de trazabilidad para el sistema de información turística del departamento del Cauca como iniciativa piloto [thesis]. Universidad del Cauca: Popayán, Colombia.
Kuo, R. J., Wang, H. S., Hu, T. L., & Chou, S. H. (2005). Application of ant K-means on clustering analysis. Computers & Mathematics with Applications, 50(10), 1709-1724.
Leiper, N. (2003). Tourism management. Australia: Pearson
Loiterton, D. & Bishop, I. (2005). Virtual environments and location-based questioning for understanding visitor movement in urban parks and gardens [conference paper in Real-time Visualisation and Participation, Dessau-Germany]. Available at http://www.kolleg.loel.hs-anhalt.de/studiengaenge/mla/mla_fl/conf/pdf/conf2005/30loiterton_c.pdf
Loke, S. (2005). Context-aware Pervasive systems: Architectures for a new breed of applications. Boca Raton, FL: Auerbach.
McLaren, D. (2003). Rethinking tourism and ecotravel. Bloomfield, CT: Kumarian.
Naphade, M., Banavar, G., Harrison, C., Paraszczak, J., & Morris, R. (2011). Smarter cities and their innovation challenges. Computer, 44(6), 32-39.
NFC Forum (2015). [online]. Retrieved from http://nfc-forum.org/
O'Connor, A., Zerger, A., & Itami, B. (2005). Geo-temporal tracking and analysis of tourist movement. Mathematics and Computers in Simulation, 69(1), 135-150.
Ogilvie, F. (1933). The tourist movement: An economic study. London, UK: PS King & Son.
O'Neill, E., Kostakos, V., Kindberg, T., Penn, A., Fraser, D. S., & Jones, T. (2006). Instrumenting the city: Developing methods for observing and understanding the digital cityscape. In UbiComp 2006: Ubiquitous Computing (pp. 315-332). Berlin-Heidelberg, Germany: Springer
Pearce, D. (1995). Tourism today: A geographical analysis [2nd ed.]. London, UK: Longman Scientific & Technical.
Pesonen, J. & Horster, E. (2012). Near field communication technology in tourism. Tourism Management Perspectives, 4, 11-18.
PrimeFaces (2014). [online]. Retrieved from http://www.primefaces.org/
Ramirez, G., Chantré, A., & Delgado, C. (2014). Proyecto piloto de trazabilidad turística [internal document]. Universidad del Cauca: Popayán, Colombia.
Remedios, D., Sousa, L., Barata, M., & Osorio, L. (2006). NFC technologies in mobile phones and emerging applications. In Information Technology for Balanced Manufacturing Systems (pp. 425-434). New York, NY: Springer.
Roland, M. & Langer, J. (2010). Digital signature records for the NFC data exchange format. In Near Field Communication (NFC), 2010 Second International Workshop on, (pp. 71-76). Piscataway, NJ: IEEE.
Ronay, E. & Egger, R. (2013). NFC smart city: Cities of the future—a scenario technique application. Information and Communication Technologies in Tourism 2014 [Proceedings of the International Conference in Dublin, Ireland, January 21-24, 2014], (pp. 565-577). Cham, Switzerland: Springer.
Russo, A. P., Clave, S. A., & Shoval, N. (2010). Advanced visitor tracking analysis in practice: explorations in the PortAventura theme park and insights for a future research agenda. Information and Communication Technologies in Tourism 2010, 159-170.
Spitzer, F. (1964). Principles of random walk. New York, NY: Springer.
Tchetchik, A., Fleischer, A., & Shoval, N. (2009). Segmentation of visitors to a heritage site using high-resolution time-space data. Journal of Travel Research, 48(2), 216-229.
Tiru, M., Kuusik, A., Lamp, M. L., & Ahas, R. (2010). LBS in marketing and tourism management: measuring destination loyalty with mobile positioning data. Journal of Location Based Services, 4(2), 120-140.
Tobler, W. (1997). Movement modelling on the sphere. Geographical and Environmental Modelling, 1(1), 97-103.
United Nations World Tourism Organization [UNWTO]. (2014, Jan. 20). International tourism exceeds expectations with arrivals up by 52 million in 2013 [press release]. Retrieved from http://media.unwto.org/press-release/2014-01-20/international-tourism-exceeds-expectations-arrivals-52-million-2013
Van Setten, M., Pokraev, S., & Koolwaaij, J. (2004). Context-aware recommendations in the mobile tourist application COMPASS. Lecture Notes in Computer Science [Adaptive hypermedia and adaptive web-based systems], 3137, 235-244
Wang, B. & Manning, R. (1999). Computer simulation modeling for recreation management: A study on carriage road use in Acadia National Park, Maine, USA. Environmental Management, 23(2), 193-203.
Wang, Y., Lim, E. P., & Hwang, S. Y. (2006). Efficient mining of group patterns from user movement data. Data & Knowledge Engineering, 57(3), 240-282.
Xia, J. & Arrowsmith, C. (2005). Managing scale issues in spatio-temporal movement of tourists modelling. In International Congress on Modelling and Simulation. Retrieved from http://ip-103-1-174-100.ip.secureserver.net/modsim05/papers/xia.pdf
Xia, J. (2007). Modelling the spatial-temporal movement of tourists [PhD thesis]. RMIT University: Melbourne, Australia
Xia, J., Zeephongsekul, P., & Arrowsmith, C. (2009). Modelling spatio-temporal movement of tourists using finite Markov chains. Mathematics and Computers in Simulation, 79(5), 1544-1553.
Zimmermann, K. F. & Constant, A. F. (2003). The dynamics of repeat migration: A Markov chain analysis [discussion paper online]. Retrieved from http://www.econstor.eu/handle/10419/18135
Downloads
Publicado
Edição
Seção
Licença
Esta publicação está licenciada sob os termos da licença CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/deed.pt_BR).