Sistema de procesamiento de imágenes multiespectrales aéreas para agricultura de precisión
DOI:
https://doi.org/10.18046/syt.v16i47.3221Palabras clave:
Agricultura de precisión; índice vegetativo; infrarrojo cercano; Vehículo aéreo no tripulado; Sequoia.Resumen
La agricultura cubana tiene la necesidad creciente de aumentar su productividad, para lograrlo, la agricultura de precisión puede desempeñar un papel fundamental. Es necesario entonces desarrollar un sistema de procesamiento de imágenes capaz de procesar toda la información de los cultivos y calcular índices vegetativos de forma satisfactoria, para así medir con precisión el déficit de nitrógeno, el estrés hídrico y el vigor vegetal, entre otros aspectos, para que la atención de estos aspectos sea también precisa. Este documento reporta los resultados de una investigación dirigida al desarrollo de un procedimiento para la toma y procesamiento de imágenes multiespectrales aéreas obtenidas desde Vehículos Aéreos No Tripulados [VANT], para obtener índices vegetativos de sembrados de caña de azúcar que puedan ser correlacionados con el nivel de vigor vegetal, el número de tallos o la masa foliar por parcela. Se utilizó un VANT USENSE-X8 y sus componentes, un sensor multiespectral Sequoia y el software de procesamiento QGIS. El procedimiento fue validado de forma experimental.
Referencias
Bachmann, F., Herbst, R., Gebbers, R., & Hafner, V.V. (2013). Micro UAV based georeferenced orthophoto generation in VIS+NIR for precision agriculture. In: Proceedings of the UAV. Remote Sensing and Spatial Information Sciences, (Vol. 40. pp. 11-16).
Basso, B. (2014). Perspectivas y avances del uso de UAV en AP en USA. Retrieved from: https://inta.gob.ar/sites/default/files/script-tmp-inta_g1-perspectivas_y_avances_del_uso_de_uav_en_ap_e.pdf
Best, S. & Zamora, I. (2008). Tecnologías aplicables en agricultura de precisión: uso de tecnología de precisión en evaluación, diagnóstico y solución de problemas productivos. Santiago de Chile: Fundación para la Innovación Agraria.
Best, S., León, L., & Claret, M. (2005). Use of precision viticulture tools to optimize the harvest of high quality grapes. Proceedings of the fruits and nuts and vegetable production engineering TIC (Frutic05), (pp. 249-258).
Campo, L., Corrales, J. & Ledezma, A. (2015). Remote sensing for agricultural crops based on a low cost quadcopter. Sistemas & Telemática, 13(34), 49-63. doi:10.18046/syt.v13i34.2092
Candiago, S., Remondino, F., De Giglio, M., Dubbini, M., & Gattelli, M. (2015). Evaluating multispectral images and vegetation indices for precision farming applications from UAV images. Remote Sensing, 7(4), 4026-4047.
Chuvieco, L. (2000). The use of qualitative airbone multispectral imaging for managing agricultural crops: a case study in South- Eastern Australia. Aust. J. Exp. Agric, 40, 725-738.
Dennis, L., Wright, J. & Philip, R. (2003). Managing protein in hard red spring wheat with remote sensing [paper in The 6th Annual National Wheat Industry Research Forum, 2003. Retrieved from: https://www.researchgate.net/publication/252140884_Managing_Grain_Protein_in_Wheat_Using_Remote_Sensing
Gago, J., Douthe, C., Coopman, R., Gallego, P., Ribas-carbo, M., ... & Medrano, H. (2015). UAVs challenge to assess water stress for sustainable agriculture. Agricultural Water Management, 153, 9-19.
García, C. & Herrera, F. (2015). Percepción remota en cultivos de caña de azúcar usando una cámara multiespectral en vehículos aéreos no tripulados [paper in: Anais XVII Simpósio Brasileiro de Sensoriamento Remoto-SBSR. Retrieved from: http://www.dsr.inpe.br/sbsr2015/files/p0873.pdf
Gitelson, A. A., Kaufman, Y. J., & Merzlyak, M. N. (1996). Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote sensing of Environment, 58(3), 289-298.
Guo, T., Kujirai, T.. & Watanabe, T. (2012). Mapping crop status from an unmanned aerial vehicle for precision agriculture applications. In: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, (Vol. 39-B1 pp.485-490). ISPRS.
Gutierrez-Rodriguez, M., Escalante-Estrada, J. A., & Rodriguez-Gonzalez, M. T. (2005). Canopy reflectance, stomatal conductance, and yield of Phaseolus vulgaris L. and Phaseolus coccinues L. under saline field conditions. Int. J. Agric. Biol, 7, 491-494.
Hatfield, J. L. & Prueger, J. H. (2010). Value of using different vegetative indices to quantify agricultural crop characteristics at different growth stages under varying management practices. Remote Sensing, 2, 562-578.
Hernández, L., Rodríguez, E., Martínez, A., Álvarez, H., Kharuf, S., & Morales, L. H. (2016). Levantamiento fotogramétrico de la UBPC “Desembarco del Granma” utilizando aviones no tripulados, solución de bajo costo para la agricultura nacional. In: VII Edición de la Conferencia Científica Internacional sobre Desarrollo Agropecuario y Sostenibilidad 2016. Santa Clara, Cuba: UCLV.
Hernández-Morales, L., Valeriano-Medina, Y., Hernández-Julián, A. & Hernández-Santana, L. (2017). Estudio sobre la estrategia de guiado L1 para el seguimiento de caminos rectos y curvos en UAV. Ingeniería Electrónica, Automática y Comunicaciones, 38, 14-25
Huete, A.R. (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25, 295-309.
Hunt, E. R., Hively, W. D., Fujikawa, S. J., Linden, D. S., Daughtry, C. S., & McCarty, G. W. (2010). Acquisition of NIR-green-blue digital photographs from unmanned aircraft for crop monitoring. Remote Sensing, 2, 290-305.
Johansen, K., Sallam, N., Robson, A., Samson, P., Chandler, K., Derby, L., ... & Jennings, J. (2018). Using GeoEye-1 Imagery for Multi-Temporal Object-Based Detection of Canegrub Damage in Sugarcane Fields in Queensland, Australia. GIScience & Remote Sensing, 55(2), 285-305.
Lofton, J., Tubana, B. S., Kanke, Y., Teboh, J., Viator, H., & Dalen, M. (2012). Estimating sugarcane yield potential using an in-season determination of normalized difference vegetative index. Sensors, 12, 7529-7547.
Lopes, M. S. & Reynolds, M. P. (2012). Stay-green in spring wheat can be determined by spectral reflectance measurements (normalized difference vegetation index) independently from phenology. Journal of Experimental Botany, 63, 3789-3798.
Marote, M. (2010). Agricultura de Precisión. Ciencia y Tecnología, 10, 151.
Martínez, L. J. (2017). Relationship between crop nutritional status, spectral measurements and Sentinel 2 images. Agronomía Colombiana, 35, 205-215.
Pettorelli, N., Vik, J. O., Mysterud, A., Gaillard, J. M., Tucker, C. J., & Stenseth, N. C. (2005). Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends in Ecology & Evolution, 20(9), 503-510.
Rondeaux, G., Steven, M., & Baret, F. (1996). Optimization of soil-adjusted vegetation indices. Remote Sensing of Environment, 55(2), 95-107.
Salamí, E., Barrado, C., & Pastor, E. (2014). UAV flight experiments applied to the remote sensing of vegetated areas. Remote Sensing, 6(11), 11051-11081
Saxena, L., & Armstrong, L. (2014). A survey of image processing techniques for agriculture. In: Proceedings of Asian Federation for Information Technology in Agriculture (pp. 401-413). Perth, W.A: Australian Society of Information and Communication Technologies in Agriculture. Retrieved from: https://ro.ecu.edu.au/ecuworkspost2013/854
Torres, A., Gómez, A., & Jiménez, A. (2015). Development of a multispectral system for precision agriculture applications using embedded devices. Sistemas & Telemática, 13(33), 27-44. https://doi.org/10.18046/syt.v13i33.2079
Trotter, T. F., Frazier, P., Trotter, M. G. & Lamb, D. W. (2008). Objective biomass assessment using an active plant sensor (Crop Circle), preliminary experiences on a variety of agricultural landscapes [white paper]. Retrieved from: https://www.researchgate.net/profile/Paul_Frazier2
Vibhute, B. S. & Bodhe, S. K. (2012). Applications of Image Processing in Agriculture: A Survey. International Journal of Computer Applications, 52, 34 - 40.
Virlet, N., Costes, E., Martinez, S., Kelner, J. J., & Regnard, J. L. (2015). Multispectral airborne imagery in the field reveals genetic determinisms of morphological and transpiration traits of an apple tree hybrid population in response to water deficit. Journal of Experimental Botany, 66(18), 5453-5465.
Zhao, Y., Della-Justina, D., Kazama, Y., Rocha, J., Graziano, P., & Camargo, R. (2016). Dynamics modeling for sugar cane sucrose estimation using time series satellite imagery. In: Proceedings of the Remote Sensing for Agriculture, Ecosystems, and Hydrology XVIII (pp. 99980J). International Society for Optics and Photonics. https://doi.org/10.1117/12.2242490
Descargas
Publicado
Número
Sección
Licencia
Esta publicación está licenciada bajo los términos de la licencia CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/deed.es)