Hacia un sistema de detección automática de talento deportivo: una aplicación al Tae Kwon Do
Palabras clave:
Tae Kwon Do; machine learning; wrapper; embedded; decision tree; support vector machine.Resumen
El Tae Kwon Do es un arte marcial coreano reconocido como deporte olímpico, para el cual se han desarrollado diferentes herramientas desde la ingeniería, principalmente enfocadas en mejorar la capacidad de los competidores. Sin embargo, existe una brecha en el proceso de selección de atletas de alto rendimiento. Por ello, está investigación se enfocó en desarrollar un sistema basado en la información de la clasificación de los deportistas de la Federación Ecuatoriana de Tae Kwon Do, utilizando los métodos wrapper y embedded y los algoritmos Decision Tree y Support Vector Machine para la valoración de los diferentes factores considerados en dicha clasificación. La principal contribución de este trabajo es proporcionar un sistema de apoyo objetivo para la selección de dichos atletas.
Referencias
Alderson, J. (2015). A markerless motion capture technique for sport performance analysis and injury prevention: Toward a ‘big data’, machine learning future. Journal of Science and Medicine in Sport, 19(3), e79. doi: 10.1016/j.jsams.2015.12.192
Badr, H., Abdelkarim, M., Hanane, E., & Mohammed, E. (2014). A comparative study of decision tree ID3 and C4.5. International Journal of Advanced Computer Science and Applications, 2014. doi: 10.14569/SpecialIssue.2014.040203
Blum, A. L., & Langley, P. (1997). Selection of relevant features and examples in machine learning. Artificial Intelligence, 97(1), 245 - 271. doi: https://doi.org/10.1016/S0004-3702(97)00063-5
Brotons, J. (2005). Propuesta de un modelo integral para el proceso de detección, selección y desarrollo de talentos deportivos a largo plazo. Revista Digital, 10(91). Retrieved from: http://www.efdeportes.com/efd91/selec.htm
Guyon, I., Weston, J., Barnhill, S., & Vapnik, V. (2002). Gene selection for cancer classification using support vector machines. Machine learning, 46(1-3), 389-422.
Kong, Y., Wei, Z., & Huang, S. (2018). Automatic analysis of complex athlete techniques in broadcast taekwondo video. Multimedia Tools and Applications, 77(11), 13643-13660. https://doi.org/10.1007/s11042-017-4979-0
Kotsiantis, S. B. (2013). Decision trees: A recent overview. Artificial Intelligence Review, 39(4), 261-283. https://doi.org/10.1007/s10462-011-9272-4.
Kwon, D. Y. (2013). A study on taekwondo training system using hybrid sensing technique. Retos, 16(12), 1439-1445. http://dx.doi.org/10.9717/kmms.2013.16.12.1439
Kwon, D. Y. & Gross, M. (2005). Combining body sensors and visual sensors for motion training. In: Proceedings of the 2005 ACM SIGCHI International Conference on Advances in Computer Entertainment Technology, (pp. 94–101). New York, NY: ACM. http://doi.acm.org/10.1145/1178477.1178490
Langley, P. (1994). Selection of relevant features in machine learning. In: Proceedings of the AAAI Fall Symposium on Relevance (pp. 140-144). AAAI.
Lara, R. (2015). Real-time volcanic monitoring using wireless sensor networks [doctoral dissertation). Universidad Rey Juan Carlos: Madrid, España.
Liu, C., Wang, W., Zhao, Q., Shen, X., & Konan, M. (2017). A new feature selection method based on a validity index of feature subset. Pattern Recognition Letters, 92(C), 1-8. doi: 10.1016/j.patrec.2017.03.018
Muscolo, G. G., & Recchiuto, C. T. (2016, September). T.P.T. a novel taekwondo personal trainer robot. Robot Auton. Syst., 83(C), 150-157. http://dx.doi.org/10.1016/j.robot.2016.05.009
Parikh, K. S., & Shah, T. P. (2016). Support vector machine – a large margin classifier to diagnose skin illnesses. Procedia Technology, 23, 369-375.
Scholkopf, B., & Smola, A. (2002). Learning with kernels. Cambridge, MA: MIT.
Shi, L., Duan, Q., Ma, X., & Weng, M. (2012). The research of support vector machine in agricultural data classification. In: D. Li & Y. Chen (Eds.), Computer and Computing Technologies in Agriculture (pp. 265-269). Berlin-Heidelberg, Germany: Springer.
Suto, J., Oniga, S., & Sitar, P. P. (2016, May). Comparison of wrapper and filter feature selection algorithms on human activity recognition. In: 2016 6th International Conference on Computers Communications and Control (ICCCC), (pp. 124-129). doi: 10.1109/ICCCC.2016.7496749
Trejo, O. & Miramá, V. (2018). Machine learning algorithms for inter-cell interference coordination. Sistemas & Telemática, 16(46), 37-57. doi:10.18046/syt.v16i46.3034
Urcuqui, C. & Navarro, A. (2016). Framework for malware analysis in Android. Sistemas & Telemática, 14(37), 45-56. https://doi.org/10.18046/syt.v14i37.2241
Valero, C. (2017). Aplicación de métodos de aprendizaje automático en el análisis y la predicción de resultados deportivos. Retos, 34, 377-382.
Vergara, J., Martínez, M. C., & Caicedo, O. (2017). A benchmarking of the efficiency of supervised ML algorithms in the NFV traffic classification. Sistemas & Telemática, 15(42), 47-67. doi:10.18046/syt.v15i42.2539
Zelic, I., Kononenko, I., Lavrac, N., & Vuga, V. (1997). Induction of decision trees and bayesian classification applied to diagnosis of sport injuries. Journal of Medical Systems, 21(6), 429-444. https://doi.org/10.1023/A:1022880431298
Zhang, Y. (2012). Support vector machine classification algorithm and its application. In C. Liu, L. Wang, & A. Yang (Eds.), Information Computing and Applications, (pp. 179-186). Berlin-Heidelberg, Germany: Springer.
Zhong, M., Hung, J., Yang, Y., & Huang, C. (2016). GA-SVM classifying method applied to dynamic evaluation of taekwondo. In: 2016 International Conference on Advanced Materials for Science and Engineering (ICAMSE), (pp. 534-537). doi: 10.1109/ICAMSE.2016.7840191
Descargas
Publicado
Número
Sección
Licencia
Esta publicación está licenciada bajo los términos de la licencia CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/deed.es)