Generación de malla de piel a partir de la anatomía interna

Autores/as

  • Andrés Adolfo Navarro Newball Pontificia Universidad Javeriana, Cali
  • Francisco Julián Herrera Botero Pontificia Universidad Javeriana, Cali
  • Diego Fernando Loaiza Buitrago Pontificia Universidad Javeriana, Cali

DOI:

https://doi.org/10.18046/syt.v9i17.1051

Palabras clave:

Piel, animación en 3D, anatomía.

Resumen

Es posible generar la malla de la piel a partir de la anatomía interna. Este artículo presenta un método que recibe huesos, un conjunto de músculos y un conjunto de órganos complementarios para generar la piel. El método inicia en el fondo de la anatomía y genera una serie de puntos clave que luego proyecta en un plano espejo que corta la criatura por la mitad. Una vez en el plano, los puntos son triangulados y reflejados. Posteriormente, la malla de la piel es ajustada expandiéndola y contrayéndola hasta que está a una distancia predeterminada de la anatomía. Finalmente, el pelo es generado con desplazamientos a partir de malla de la piel. El método depende del conocimiento anatómico para generar los puntos clave, pero elimina la necesidad de una malla de piel preexistente. La malla creada es anatómicamente consistente con la anatomía de la criatura.

Biografía del autor/a

  • Andrés Adolfo Navarro Newball, Pontificia Universidad Javeriana, Cali
    CV disponible en inglés
  • Francisco Julián Herrera Botero, Pontificia Universidad Javeriana, Cali
    CV disponible en inglés
  • Diego Fernando Loaiza Buitrago, Pontificia Universidad Javeriana, Cali
    CV disponible en inglés

Referencias

Bottino, A., Nuij, W., and Overveld, K. V. (1996). How to shrinkwrap through a critical point: an algorithm for the adaptive triangulation of iso-surfaces with arbitrary topology. In In Proc. Implicit Surfaces 96, 53–72.

Bourke, P. (1994). Polygonising a scalar field. http://local.wasp.uwa.edu.au/ pbourke/geometry/polygonise/

Breton, G., Bouville, C., and Pel’e, D. (2001). FaceEngine a 3D facial animation engine for real time applications. In Web3D ’01: Proceedings of the sixth international conference on 3D Web technology, New York, NY, USA, 15–22. ACM.

Cheng, S. W., Dey, T. K., and Ramos, E. A. (2007). Delaunay refinement for piecewise smooth complexes. In SODA ’07: Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, Philadelphia, PA, USA, 1096–1105. Society for Industrial and Applied Mathematics.

Collins, G. and Hilton, A. (2001), Models for character animation. Software Focus, 2: 44–51
Hansford, D. (2007). Barycentric Coordinates Introduction to Computer Graphics Arizona State University. http://www.farinhansford.com/dianne/teaching/cse470/materials/BarycentricCoords.pdf

James, D. L. and Twigg, C. D. (2005). Skinning mesh animations. In SIGGRAPH ’05: ACM SIGGRAPH 2005 Papers, New York, NY, USA, 399–407. ACM.

Kähler, K., Haber, J., and Seidel, H.-P. (2003). Reanimating the dead: reconstruction of expressive faces from skull data. In SIGGRAPH ’03: ACM SIGGRAPH 2003 Papers, New York, NY, USA, 554–561. ACM.

Karabassi, E.-A., Papaioannou, G., and Theoharis, T. (1999). A fast depth-buffer based voxelization algorithm. J. Graph. Tools, 4 (4), 5–10.

Kavan, L., Collins, S., ˇZ´ara, J., and O’Sullivan, C. (2007). Skinning with dual quaternions. In I3D ’07: Proceedings of the 2007 symposium on Interactive 3D graphics and games, New York, NY, USA, 39–46. ACM.

King, S. A. (2001). A facial model and animation techniques for animated speech. PhD. thesis, The Ohio State University.

Lorensen, W. E. and Cline, H. E. (1987). Marching cubes: A high resolution 3D surface construction algorithm. In SIGGRAPH ’87: Proceedings of the 14th annual conference on Computer graphics and interactive techniques, New York, NY, USA, 163–169. ACM.

Mohr, A. and Gleicher, M. (2003). Building efficient, accurate character skins from examples. In SIGGRAPH ’03: ACM SIGGRAPH 2003 Papers, New York, NY, USA, 562–568. ACM.

Morse, B. S., Liu, W., Yoo, T. S., and Subramanian, K. (2005). Active Contours Using a Constraint-Based Implicit Representation. Computer Vision and Pattern Recognition, IEEE Computer Society Conference on, 1, 285–292.

Navarro Newball (2010). Londra, A Dog Facial Animation Model. PhD thesis. Department of Computer Science. University of Otago.

Papaioannou, G. (2002). A simple and fast technique for fur rendering. http://www.aueb.gr/users/gepap/.

Simmons, M., Wilhelms, J., and Van Gelder, A. (2002). Model-based reconstruction for creature animation. In SCA ’02: Proceedings of the 2002 ACM SIGGRAPH/ Eurographics symposium on Computer animation, New York, NY, USA,139–146. ACM.

Tarini, M., Yamauchi, H., Haber, J., and Seidel, H.-P. (2002). Texturing Faces. In Graphics Interface, 89–98.

Tutorial board (2011). Interview With CGI Artist Andrius Balciunas Also Known As “CryingHorn”. http://www.tutorialboard.net/interview-cgi-artist-andrius-balciunas-cryinghorn/

Tutorial board (2011). Interview with 3D CG Artist Marcos Nicacio. http://www.tutorialboard.net/interview-3d-cg-artist-marcos-nicacio/

Tutorial board (2011). Interview With 3D Character Artist from Blitz Game Studios Jose Lazaro. http://www.tutorialboard.net/interview-3d-character-artist-blitz-game-studios-jose-lazaro/

Van Overveld, K. and Wyvill, B. (2004). Shrinkwrap: An efficient adaptive algorithm for triangulating an iso-surface. Vis. Comput., 20 (6), 362–379.

Ward D (2010). Game engine Character Part 1. Blender Tutorials. http://www.blendercookie.com/2010/05/13/game-enginecharacter-part-1/

Wilhelms, J. and Van Gelder, A. (1997). Anatomically based modeling. In SIGGRAPH’97: Proceedings of the 24th annual conference on Computer graphics and interactive techniques, New York, NY, USA, 173–180. ACM Press/Addison-Wesley Publishing Co.

Williamson J. Modeling a Creatures Head (2008). http://www.blendernation.com/2008/02/21/timelapse-video-modeling-a-creatures-head/

Descargas

Publicado

2011-07-13

Número

Sección

Investigación científica y tecnológica