OSA: A Vanet application focused on fuel saving and reduction of CO2 emissions

Authors

  • Oscar Arley Orozco Universidad Icesi, Cali
  • Gonzalo Llano Universidad Icesi, Cali

DOI:

https://doi.org/10.18046/syt.v12i29.1803

Keywords:

CO2, Energy Efficiency, Gasoline consumption, Greenhouse gas, I2V, OSA, VANET.

Abstract

With the growth in the number of vehicles moving through the streets, high vehicular flow has become a mobility and public health problem for governmental institutions and people since time of travel, gasoline consumption, and greenhouse gas [GHG] emissions have suffered an important increase. Hereby, policies and actions are required to reduce the impact of this increase. In this context, we have developed an application for the simulation of Vehicular Ad hoc Networks [VANET] using two software applications: SUMO and OMNeT++. The application we developed optimizes fuel usage and reduces GHG emissions; showing that vehicles following a preset speed (previously studied), gasoline consumption and GHG emissions present a considerable decrease compared to vehicles not running at that speed.

Author Biographies

  • Oscar Arley Orozco, Universidad Icesi, Cali
    Electronic and Telecommunications Engineer (2013) from Universidad del Cauca (Popayán, Colombia). Young Researcher of Colciencias at the Informatics and Telecommunications Research Group (i2t) at Universidad Icesi. Topics of interest are Vehicular Ad hoc Networks, Wireless Communications and Communications for Intelligent Transportation Systems.
  • Gonzalo Llano, Universidad Icesi, Cali
    Ph.D., in Telecommunications (2009) and Master in Technology, Communication Systems and Networks (2008) of the Polytechnic University of Valencia, Spain and Computer Specialist Organizational Management from the Universidad Icesi. He is currently Associate Professor and researcher at the Department of Information and Communications Technology attached to the Engineering Faculty at the Universidad Icesi

References

Bai, F., Krishnan, H., & Sadekar V. (2006). Towards Characterizing and Classifying Communication-based Automotive Applications from a Wireless Networking Perspective. Warren, MI: General Motors

Car 2 Car Communication Consortium [C2C-CC]. (2007). C2C-CC Manifesto: Overview of the C2C-CC system, version 1.1. Retrieved from http://www.car-to-car.org/index.php?id=31&L=oksjf

Departamento Administrativo Nacional de Estadística [DANE] (2013, Dic.17). Grandes almacenes e hipermercados minoristas, GAHM, III Trimestre 2013 [Press release]. Retrieved from http://www.dane.gov.co/daneweb_V09/files/investigaciones/boletines/almacenes/cp_GAHMCV_IIItrim13.pdf

Di Felice, M., Ghandour A., Artail, H., & Bononi L. (2012). On the Impact of Multi-channel Technology on Safety-Message Delivery in IEEE 802.11p/1609.4 Vehicular Networks. 21th International Conference on Computer Communications and Networks (p. 1-8). Munich: IEEE.

Doolan, R. & Muntean G. (2013). VANET-enabled Eco-friendly Road Characteristics-aware Routing for Vehicular Traffic. 77th IEEE Vehicular Technology Conference (p. 1-5), Dresden, Germany. Piscataway, NJ: IEEE.

Draeger, K. (2007). BMW Group Research and Technology. Creative Power – customer oriented and efficient. [white paper]. Retrieved from http://www.bmwgroup.com/e/0_0_www_bmwgroup_com/unternehmen/publikationen/aktuelles_lexikon/_pdf/alex_forschung_technik_10_05_final.pdf

Ford Jr. W. & Mulally A. (2013). Sustainability Report Summary 2012/13 [white paper]. Retrieved from http://corporate.ford.com/doc/sr12-summary.pdf

General Motors. (2013). General Motors collaborative research lab, Electrical & Computer Engineering. Carnegie Mellon University. Retrieved from http://gm.web.cmu.edu

Greene, D. (2011). Reducing Greenhouse Gas Emissions From Transportation: A presentation to the Legislative Commission on Global Climate Change. Raleigh, NC: Oak Ridge National Laboratory

Guo, H. (2009). Automotive Informatics and Communicative Systems. Hershey, PA: IGI Global Snippet

Hausberger, S., Rexeis, M., Zallinger, M., & Luz, R. (2009). Emission Factors from the Model PHEM for the HBEFA Version 3. Report Nr. I-20/2009 Haus-Em 33/08/679 from 07.12.

Idigoras, J. (2009). iTETRIS: Plataforma Europea para el Análisis del Impacto de Sistemas ITS Cooperativos en la Gestión del Tráfico. Andorra: CBT Communication Engineering

Institute of Electrical and Electronics Engineers [IEEE]. (2010). IEEE Std. IEEE 802.11p. Retrieved from http://ieeexplore.ieee.org/servlet/opac?punumber=5514473

International Business Machines Corporation [IBM]. (2010). The Case for Smart Transportation [white paper]. Retrieved from http://www-07.ibm.com/innovation/my/exhibit/documents/pdf/2_The_Case_For_Smarter_Transportation.pdf

International Telecommunications Union [ITU]. (2007). Intelligent Transport Systems and CALM. ITU-T Technology Watch Report 1. Geneva, Switzerland: ITU

Jakubiak, J. (2008). State of the Art and Research Challenges for VANETs. Consumer Communications and Networking Conference (p. 912-916). Danvers, MA: IEEE.

Jian, D. & Delgrossi L. (2008). IEEE 802.11p: Towards an international standard for wireless access in vehicular environments. Proceedings of IEEE Vehicular Technology Conference (p. 2036-2040), Marina Bay, Singapore. Piscataway, NJ: IEEE

Karagiannis, G., Altintas, O., Ekici, E., Heijenk, G., Jarupan, B., Lin, K., & Weil T. (2011). Vehicular Networking: A Survey and Tutorial on Requirements, Architectures, Challenges, Standards and Solutions. IEEE Communications Surveys & Tutorials, 13(4), 584-616

Kenney, J. (2011). Dedicated short-range communications (DSRC) standards in the United States. Proceedings of the IEEE, 99(7), 1162-1182

Konstantinopoulou, L. (2012). iMobility Support. Retrieved from http://www.imobilitysupport.eu/imobility-support

Li, Y. (2012). An Overview of the DSRC/WAVE Technology. 7th International Conference on Heterogeneous Networking for Quality, Reliability, Security and Robustness (p. 544-558). Houston, TX: ICST.

Mehta, T., Kottapalli, A., Mahmassani, H., & Bhat C. (2010). Intelligent Transportation Systems and the Environment. Technical Report 4197-S. Austin, TX: The University of Texas at Austin.

Orozco, A., Michoud, R., & Llano G. (2012). Efficiency applications for vehicular networks: Towards green transportation systems. 4th IEEE Latin-American Conference on Communications, Cuenca, Ecuador. Piscataway, NJ: IEEE.

Orozco, O., Orozco, A., & Llano G. (2014). Aplicaciones Vehiculares orientadas hacia la Eficiencia Energética e Impacto Ambiental. Unpublished Paper. Cali, Colombia: Universidad Icesi.

Qian, Y. & Moayeri N. (2008). Design Secure and Application-Oriented VANETs. Proceedings of IEEE Vehicular Technology Conference (p. 2794-2799), Marina Bay, Singapore. Piscataway, NJ: IEEE.

Senouci, S., Moustafa, H., & Jerbi M. (2009). Vehicular Networks: Techniques, Standards and Applications. Boston, MA: Auerbach

Stampoulis, A. & Chai Z. (2007). A Survey of Security in Vehicular Networks. Project CPSC 534. New Haven, CT: Yale University

Tsugawa, S. & Kato S. (2010). Energy ITS: Another Application of Vehicular Communications. IEEE Communications Magazine, 48(11), 120-126

Ülgen, O. (2006). Simulation methodology: A practitioner’s perspective. Dearborn, MI: University of Michigan

United States Department of State (2010). U.S. Climate Action Report – 2010 [Fifth National Communication of the United States of America Under the United Nations Framework Convention on Climate Change]. Retrieved from http://unfccc.int/resource/docs/natc/usa_nc5.pdf

United States Environmental Protection Agency [EPA]. (2008). Average Annual Emissions and Fuel Consumption for Gasoline Fueled Passenger Cars and Light Trucks [technical report EPA420-F-08-024]. Retrieved from http://www.epa.gov/otaq/consumer/420f08024.pdf

Downloads

Published

2014-06-30

Issue

Section

Original Research