Diagnosis of high-speed dental pieces from their sound analysis
DOI:
https://doi.org/10.18046/syt.v11i25.1560Keywords:
High speed dental piece, Data acquisition, Digital Signal Processing, Neural Networks.Abstract
The computational tools are developed to help professionals to determine anomalies in different equipment. These tools seek to determine any damage without disassembly for the purpose of optimize processes, in this case the operation of the diagnose high speed dental piece. This article presents the results of the implementation of a computational algorithm for obtaining, from the sounds generated by turbines high speed parts, in what state is this. This is accomplished by capturing the sound of high-speed components in good and bad state, in order to build a database from these sounds, each of these signals are extracted features in different domains to train a neural network, which diagnose the state of the workpiece. With the implementation of this system has been possible to achieve an 81% success rate for the classification of defective pieces.
References
Álvarez, A. (2001). Fundamentos del reconocimiento automático de la voz [en línea - material de clase de la Universidad Politécnica de Madrid, España]. Recuperado de http://tamarisco.datsi.fi.upm.es/ASIGNATURAS/FRAV/apuntes/extraccion.pdf
Arrabales, R. (1999). Extracción de Características de la Señal de Voz. Recuperado de http://www.conscious-robots.com/raul/voz_old/voz_extr.htm
Macías, J. & Gamo, J. (2010). Laboratorio de instrumentación electrónica [guía docente]. Alcalá, España: Universidad de Alcalá
Faundez, P. & Fuentes, Á. (2000). Procesamiento digital de señales acústicas utilizando wavelets [en línea - documento del Instituto de Física y Matemática de la Universidad Austral de Chile, UACh]. Recuperado de http://www.hst.aau.dk/~vhooraz/tesis_wavelet.pdf
Hernando, F. (1993). Técnicas de procesado y representación de la señal de voz para el reconocimiento del habla en ambientes ruidosos [tesis doctoral]. Universidad Politécnica de Cataluña: España: Disponible en http://www.tdx.cat/handle/10803/6911
Jiménez, J. (2008). Implementación de un algoritmo para la detección de defectos en tuberías mediante ensayo no destructivo de materiales por ultrasonido [tesis de maestría]. Universidad del Valle: Cali, Colombia
Jiménez, J. & Loaiza, H. (2010). Detección y caracterización de defectos en tuberías metálicas en pruebas ultrasónicas por inmersión. El Hombre y la Máquina, 22(34), 56-67
López, J. & Caicedo, E. (2003). Una aproximación práctica a las redes neuronales artificiales. Cali, Colombia: Universidad del Valle
Martín-del-Brio, B. & Molina, A. (2002). Redes neuronales y sistemas difusos [2a ed.]. México D.F., México: Alfaomega
Proakis, J. & Manolakis, D. (2007). Tratamiento digital de señales. Madrid, España: Pearson
Shuxiang, J. & Wong, S. (2004). Development of an automated ultrasonic testing system [en línea]. NDT.net, 10(4). Recuperado de http://www.ndt.net/article/icem2004/papers/184/184.htm
Stepinski, T. & Lingvall, F. (2000). Automatic defect characterization in ultrasonic. En Proceedings of 15th World Conference on Nondestructive Testing. Recuperado de http://www.ndt.net/article/wcndt00/papers/idn393/idn393.htm
Zingerman, A. & Dickstein, P. (2000). Wavelets entropy and zero-crossing white-noise test applied to ultrasonic classification of degrading adhesive joints [Poster en ECNDT 2006]. Recuperado de http://www.ndt.net/article/ecndt2006/doc/P200.pdf
Downloads
Published
Issue
Section
License
This journal is licensed under the terms of the CC BY 4.0 licence (https://creativecommons.org/licenses/by/4.0/legalcode).