Análise de risco de crédito enfrentada por empresas de capital aberto no Brasil: uma abordagem utilizando análise discriminante de regressão logística e redes neurais artificiais

Autores

  • José Willer do Prado Associate Professor, Department of Management and Economics, Federal University of Lavras, Lavras, Brazil. http://orcid.org/0000-0003-3926-2406
  • Francisval de Melo Carvalho Associate Professor, Department of Management and Economics, Federal University of Lavras, Lavras, Brazil. http://orcid.org/0000-0002-4223-5444
  • Gideon Carvalho de Benedicto Associate Professor, Department of Management and Economics, Federal University of Lavras, Lavras, Brazil. http://orcid.org/0000-0002-7128-9775
  • André Luis Ribeiro Lima Associate Professor, Department of Management and Economics, Federal University of Lavras, Lavras, Brazil.

DOI:

https://doi.org/10.18046/j.estger.2019.153.3151

Palavras-chave:

Risco de crédito, Falência, Brasil, Indicadores financeiros

Resumo

O objetivo deste artigo é identificar quais são os indicadores econômico-financeiros que melhor distinguem as empresas de capital aberto brasileiras por meio da concessão de credito e avaliar quais das técnicas utilizadas são as mais precisas para prever a falência das empresas. Os métodos utilizados para antecipar a insolvência foram analise discriminante, regressão logística e redes neurais. A amostra foi composta por 121 empresas de diversos setores, sendo 70 solventes e 51 insolventes. As analises utilizaram 35 indicadores econômico-financeiros. Os indicadores-econômico-financeiros mais relevantes foram: necessidade de capital de giro sobre lucro líquido, termômetro de liquidez, retorno sobre patrimônio líquido, margem de lucro, índice de dívida e patrimônio líquido sobre ativos. O modelo de rede neural apresentou maior precisão e foi corroborado pela curva ROC.

Downloads

Referências

Altman, E. I. (1968). Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. The journal of finance, 23(4), 589-609. https://doi.org/10.1111/j.1540-6261.1968.tb00843.x

Altman, E. I., Baidya, T. K., & Dias, L. M. R. (1979). Previsão de problemas financeiros em empresas. Revista de administração de empresas, 19(1), 17-28. http://dx.doi.org/10.1590/S0034-75901979000100002

Assaf Neto, A. (2014). Finanças corporativas e valor (7rd ed.). São Paulo: Atlas.

Baesens, B., Van Gestel, T., Viaene, S., Stepanova, M., Suykens, J., & Vanthienen J. (2003). Benchmarking state-of-the-art classification algorithms for credit scoring, Journal of the operational research society, 54(6), 627-635. https://doi.org/10.1057/palgrave.jors.2601545

Barboza, F., Kimura, H., & Altman, E. (2017). Machine learning models and bankruptcy prediction. Expert Systems with Applications, 83, 405-417. https://doi.org/10.1016/j.eswa.2017.04.006

Beaver, W. H. (1966). Financial ratios as predictors of failure. Journal of accounting research, (4), 71-111. http://dx.doi.org/10.2307/2490171

Bellovary, J. L., Giacomino, D. E., & Akers, M. D. (2007). A review of bankruptcy prediction studies: 1930 to present. Journal of Financial Education, 33, 1-42.

Braga, R. (1991). Análise avançada do capital de giro. Caderno de estudos FIPECAFI, 3(3), 1-34.

Brasil (1945). Presidência da República, Decreto-Lei nº 7.661, de 21 de junho de 1945, Lei de Falências. Brasília. Retrieved on March 8, 2018, from: Retrieved on March 8, 2018, from: http://www.planalto.gov.br/ccivil_03/decreto-lei/del7661.htm

Brasil (2005). Congresso Nacional, Lei nº 11.101, de 9 de fevereiro de 2005. Brasília. Retrieved on March 8, 2018, from: Retrieved on March 8, 2018, from: http://www.planalto.gov.br/ccivil_03/_Ato2004-2006/2005/Lei/L11101.htm#art200

Brito, G. A. S. (2005). Mensuração de risco de portfólio para carteiras de crédito a empresas (Doctoral dissertation, Universidade de São Paulo). Retrieved on March 8, 2018, from: Retrieved on March 8, 2018, from: http://www.teses.usp.br/teses/disponiveis/12/12136/tde-07062006-160044/pt-br.php

Brito, G. A. S., Assaf Neto, A., & Corrar, L. J. (2009). Sistema de classificação de risco de crédito: uma aplicação a companhias abertas no Brasil. Revista Contabilidade & Finanças, 20(51), 28-43. https://doi.org/10.1590/S1519-70772009000300003

Bülbül, D., Hakenes, H., & Lambert, C. (2019). What influences banks’ choice of credit risk management practices? Theory and evidence. Journal of Financial Stability, 40, 1-14. https://doi.org/10.1016/j.jfs.2018.11.002

Castro Junior, F. H. F. D. (2003). Previsão de insolvência de empresas brasileiras usando análise discriminante, regressão logística e redes neurais (Doctoral dissertation, Universidade de São Paulo). Retrieved on March 8, 2018, from: Retrieved on March 8, 2018, from: http://www.teses.usp.br/teses/disponiveis/12/12139/tde-16092004-121634/en.php

do Prado, J. W., de Castro Alcântara, V., de Melo Carvalho, F., Vieira, K. C., Machado, L. K. C., & Tonelli, D. F. (2016). Multivariate analysis of credit risk and bankruptcy research data: a bibliometric study involving different knowledge fields (1968-2014). Scientometrics, 106(3), 1007- 1029. https://doi.org/10.1007/s11192-015-1829-6

Durand, D. (1941). Risk elements in consumer installment lending. Studies in consumer installment financing, 8, 1-101.

Durand, D. (1952). Costs of debt and equity funds for business: trends and problems of measurement. In Conference on research in business finance. NBER.

Eifert, D. S. (2003). Análise quantitativa na concessão de crédito versus inadimplência: um estudo empírico (Doctoral dissertation, Universidade Federal do Rio Grande do Sul). Retrieved on March 8, 2018, from: Retrieved on March 8, 2018, from: https://lume.ufrgs.br/handle/10183/3533

Fisher,R.A.(1936).The use of multiple measures in taxonomic problems. Annals of Eugenics, 7(2), 179-188. https://doi.org/10.1111/j.1469-1809.1936.tb02137.x

Fleuriet, M. et al. (1978). A dinâmica financeira das empresas brasileiras: um método de análise, orçamento e planejamento financeiro (1rd ed.). Belo Horizonte: Fundação Dom Cabral.

Fleuriet, M. et al. (2003). O Modelo Fleuriet: a dinâmica financeira das empresas brasileiras: um método de análise, orçamento e planejamento financeiro (3rd ed.). Rio de Janeiro: Campus.

García, F., Guijarro, F., & Moya, I. (2013). Monitoring credit risk in the social economy sector by means of a binary goal programming model. Service Business, 7(3), 483-495. https://doi.org/10.1007/s11628-012-0173-7

Hair, J. F. et al. (2009). Análise multivariada de dados (6rd ed.). Porto Alegre: Bookman.

Harris, T. (2013). Quantitative credit risk assessment using support vector machines: Broad versus Narrow default definitions. Expert Systems with Applications, 40(11), 4404-4413. https://doi.org/10.1016/j.eswa.2013.01.044

Haykin, S. (2007). Redes neurais: princípios e prática (2rd ed.). Bookman Editora.

Horta, R. A. M. (2010). Uma metodologia de mineração de dados para a previsão de insolvência de empresas brasileiras de capital aberto (Doctoral dissertation, Universidade Federal do Rio de Janeiro). Retrieved on March 8, 2018, from: Retrieved on March 8, 2018, from: http://objdig.ufrj.br/60/teses/coppe_d/RuiAmericoMathiasiHorta.pdf

Hosmer, D. W., & Lemeshow, S. (2004). Applied Logistic Regression (2rd ed.).

John Wiley and Sons. Iturriaga, F. J. L., & Sanz, I. P. (2015). Bankruptcy visualization and prediction using neural networks: A study of U.S. commercial banks. Expert Systems with Applications, 42(6), 2857-2868. https://doi.org/10.1016/j.eswa.2014.11.025

Kanitz, S. C. (1978). Como prever falências (1rd ed.). São Paulo: McGraw-Hill do Brasil.

Kimura, H., Suen, A., Perera, L., & Basso, L. (2008). Value-at-risk-como entender e calcular o risco pelo VaR: uma contribuição para a gestão no Brasil (1rd ed.). Ribeirão Preto: Inside Books.

Kou, G., & Wu, W. (2014). An analytic hierarchy model for classification algorithms selection in credit risk analysis. Mathematical Problems in Engineering, 2014, 1-7. http://dx.doi.org/10.1155/2014/297563

Kumar, P. R., & Ravi, V. (2007). Bankruptcy prediction in banks and firms via statistical and intelligent techniques-A review. European journal of operational research, 180(1), 1-28. https://doi.org/10.1016/j.ejor.2006.08.043

Liu, J., & Wu, C. (2019). Hybridizing kernel‐based fuzzy c‐means with hierarchical selective neural network ensemble model for business failure prediction. Journal of Forecasting. 38(2), 92-105. https://doi.org/10.1002/for.2561

Marconi, M. A., & Lakatos, E. M. (2005). Fundamentos de metodologia científica (5rd ed.). São Paulo: Editora Atlas.

Marion, J. C. (2012). Análise das demonstrações contábeis: contabilidade empresarial (7rd ed.). São Paulo: Editora Atlas .

Marques, J. A. V. C., & Braga, R. (1995). Análise dinâmica do capital de giro: o Modelo Fleuriet. Revista de Administração de Empresas, 35(3), 49-63.

Martins, G. A., & Theóphilo, C. R. (2009). Metodologia da investigação científica para ciências sociais aplicadas (1rd ed.). São Paulo: Editora Atlas .

Matarazzo, D. C. (2010). Análise financeira de balanços: abordagem gerencial (7rd ed.). São Paulo: Editora Atlas .

Matias, A. B. (1978). Contribuição às técnicas de análise financeira: um modelo de concessão de crédito (Doctoral dissertation, Universidade de São Paulo). Print.

Melo, A. C., & Coutinho, E. S. (2007). O modelo Fleuriet como indicador conjunto de solvência e rentabilidade. In XXXI Encontro da EnANPAD. Rio de Janeiro. Brasil.

Minussi, J. A., Damacena, C., & Ness Jr., W. L. (2002). Um modelo de previsão de solvência utilizando regressão logística. Revista de Administração Contemporânea, 6(3), 10-128.

Odom, M. D., & Sharda, R. (1990). A neural network model for bankruptcy prediction. In 1990 IJCNN International Joint Conference on Neural Networks. San Diego, CA, USA. http://dx.doi.org/10.1109/IJCNN.1990.137710

Ohlson, J. A. (1980). Financial ratios and the probabilistic prediction of bankruptcy. Journal of Accounting Research, 18(1), 109-131. http://dx.doi.org/10.2307/2490395

Olinquevitch, J. L., & Santi Filho, A. (2009). Análise de balanços para controle gerencial: demonstrativos contábeis exclusivos do fluxo de tesouraria (5rd ed.). São Paulo: Editora Atlas .

Oreski, S., & Oreski, G. (2014). Genetic algorithm-based heuristic for feature selection in credit risk assessment. Expert Systems with Applications, 41(4 PART 2), 2052-2064. https://doi.org/10.1016/j.eswa.2013.09.004

Padoveze, C. L., & Benedicto, G. C. (2010). Análise das demonstrações financeiras. (3rd ed.). São Paulo: Cengage Learning.

Pal, R., Kupka, K., Aneja, A. P., & Militky, J. (2016). Business health characterization: A hybrid regression and support vector machine analysis. Expert Systems with Applications, 49, 48-59. https://doi.org/10.1016/j.eswa.2015.11.027

Pereira, J. M., Domínguez, M. Á. C., & Ocejo, J. L. S. (2007). Modelos de previsão do fracasso empresarial: aspectos a considerar. Tékhne-Revista de Estudos Politécnicos, 6(7), 111-148.

Sabato, G. (2009). Modelos de Scoring de risco de crédito. Revista Tecnologia de Crédito, 1(68), 29-47.

Santana, P. J., Lanzarini, L., & Bariviera, A. F. (2018). Fuzzy credit risk scoring rules using FRvarPSO. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 26(Suppl. 1), 39-57. http://dx.doi.org/10.1142/S0218488518400032

Sanvicente, A. Z., & Minardi, A. M. A. F. (1998). Identificação de indicadores contábeis significativos para a previsão de concordata de empresas. Instituto Brasileiro de Mercado de Capitais, Working Paper, 1-12. Retrieved on March 8, 2018, from: Retrieved on March 8, 2018, from: http://www.cyta.com.ar/elearn/tc/marterial/altaman5.pdf

Schrickel, W. K. (2000). Análise de crédito: concessão e gerencia de empréstimos (5rd ed.). São Paulo: Atlas .

Sicsú, A. L. (2010). Credit Scoring: desenvolvimento, implantação, acompanhamento (1rd ed.). Blucher.

Silva, J. P. (1983). Administração de crédito e previsão de insolvência (1rd ed.). São Paulo: Editora Atlas .

Silva, J. P. (2008). Gestão e análise de risco de crédito (1rd ed.). São Paulo: Editora Atlas .

Soares, R. A., & Rebouças, S. M. D. P. (2015). Avaliação do desempenho de técnicas de classificação aplicadas à previsão de insolvência de empresas de capital aberto brasileiras. Revista ADM. MADE, 18(3), 40-61.

Vergara, S. C. (2008). Projetos e relatórios de pesquisa em administração (9rd ed.). São Paulo: Editora Atlas .

Vieira, M. V. (2008). Administração estratégica do capital de giro (2rd ed.). São Paulo: Editora Atlas .

Wang, G., Ma, J., & Yang, S. (2014). An improved boosting based on feature selection for corporate bankruptcy prediction. Expert Systems with Applications, 41(5), 2353-2361. https://doi.org/10.1016/j.eswa.2013.09.033

Yu, L. (2014). Credit risk evaluation with a least squares fuzzy support vector machines classifier. Discrete Dynamics in Nature and Society, 2014(1), 1-9. http://dx.doi.org/10.1155/2014/564213

Publicado

2019-11-07

Edição

Seção

Artigos de pesquisa

Como Citar

Análise de risco de crédito enfrentada por empresas de capital aberto no Brasil: uma abordagem utilizando análise discriminante de regressão logística e redes neurais artificiais. (2019). Estudios Gerenciales, 35(153), 347-360. https://doi.org/10.18046/j.estger.2019.153.3151