eWOM in times of COVID-19: An empirical analysis of Colombian brands on Facebook

Authors

  • Carlos Alberto Arango-Pastrana Docente tiempo completo, Facultad de Ciencias de la Administración, Universidad del Valle, Cali, Colombia. https://orcid.org/0000-0001-7314-816X
  • Carlos Fernando Osorio-Andrade Docente, Unidad Académica de Regionalización, Universidad del Valle, Cali, Colombia. https://orcid.org/0000-0002-5095-4991
  • Edwin Arango-Espinal Docente tiempo completo, Unidad Académica de Regionalización, Universidad del Valle, Caicedonia, Colombia. https://orcid.org/0000-0002-2231-3513

DOI:

https://doi.org/10.18046/j.estger.2021.158.4267

Keywords:

eWOM, COVID-19, Facebook, marketing, social networks

Abstract

The effects of the different message strategies related to COVID-19 on the generation of eWOM were analyzed; that is, if the publications referring to the pandemic receive greater participation by users of social networks in Colombia. 562 company posts on Facebook were reviewed, of which 382 were subjected to the negative binomial regression model. It was found that no message strategy related to COVID-19 affects the rate of comments. The influence of different types of content on reactions and shared content was also identified. It is concluded that social networks are recreation and entertainment scenarios; therefore, the informative content does not generate impacts on the volume of comments, reactions, or share content.

Downloads

Download data is not yet available.

References

Abitbol, A. y Lee, S. (2017). Messages on CSR-dedicated Facebook pages: What works and what doesn’t. Public Relations Review, 43(4), 796-808. https://doi.org/10.1016/j.pubrev.2017.05.002

Addo, P., Jiaming, F., Kulbo, N. y Liangqiang, L. (2020). COVID-19: Fear appeal favoring purchase behavior towards personal protective equipment. The Service Industries Journal, 40(7-8), 471-490. https://doi.org/10.1080/02642069.2020.1751823

Adorno, T. (2001). Epistemología y ciencias sociales. Madrid: Cátedra.

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716-723. https://doi.org/10.1109/TAC.1974.1100705

Andréu, J. (2011). Las técnicas de análisis de contenido: una revisión actualizada. Recuperado el 07 de marzo de 2020, de https://metodologiaecs.wordpress.com/2017/02/19/andreu-abela-jaime-2011-las-tecnicas-de-analisis-de-contenido-una-revision-actualizada/

Arnold, M. y Reynolds, K. (2012). Approach and Avoidance motivation: Investigating hedonic consumption in a retail Setting. Journal of Retailing, 88(3), 399-411. https://doi.org/10.1016/j.jretai.2011.12.004

Ashley, C. y Tuten, T. (2010). Consumer perceptions of online shopping environments. Psychology & Marketing, 30(6), 461-469. https://doi.org/10.1002/mar

BBC (2020). Coronavirus: ¿qué es “aplanar la curva” y por qué es tan importante para “retrasar y contener” la propagación del covid-19? Recuperado el 22 de marzo de 2020, de: https://www.bbc.com/mundo/noticias-51835806

Becerra, N. y Vela, F. (2011). Una comparación de los modelos poisson y binomial negativa con Stata: un ejercicio didáctico. En: 3.er Encuentro de Usuarios de Stata En México. Xochimilco: Universidad Autónoma Metropolitana. Recuperado el 13 de mayo de 2020, de https://www.stata.com/meeting/mexico11/materials/becerra-vela.pdf

Burnap, P., Williams, M., Sloan, L., Rana, O., Housley, W., Edwards, E…, Voss, A. (2014). Tweeting the terror: Modelling the social media reaction to the woolwich terrorist attack. Social Network Analysis and Mining, 4(1), 1-14. https://doi.org/10.1007/s13278-014-0206-4

Cameron, A. y Trivedi, P. (2013). Regression analysis of count data (vol. 53). Cambridge: University Press.

Cantril, H. (1942). Public opinion in flux. The Annals of the American Academy of Political and Social Science, 220(1), 136-152. https://doi.org/10.1177%2F000271624222000115

Chung, J. y Kim, Y. (2015). A netnographic study of eWOM motivations to articulate dining experiences. Journal of Internet Commerc e, 14(4), 455-475. https://doi.org/10.1080/15332861.2015.1096147

De Vries, L., Gensler, S. y Leeflang, P. (2012). Popularity of brand posts on brand fan pages: An investigation of the effects of social media marketing. Journal of Interactive Marketing, 26(2), 83-91. https://doi.org/10.1016/j.intmar.2012.01.003

Díez, A., Del Ser, J., Galar, D. y Sierra, B. (2019). Data fusion and machine learning for industrial prognosis: Trends and perspectives towards Industry 4.0. Information Fusion, 50, 92-111. https://doi.org/10.1016/j.inffus.2018.10.005

Evans, V. (2017). The emoji code: How smiley faces, love hearts and thumbs up are changing the way we communicate. Londres: Michael O'Mara Books.

Goyal, K., Chauhan, P., Chhikara, K., Gupta, P. y Singh, M. (2020). Fear of COVID 2019: First suicidal case in India! Asian Journal of Psychiatry, (49), 101989. https://doi.org/10.1016%2Fj.ajp.2020.101989

Gupta, H., Singh, S. y Sinha, P. (2017). Multimedia tool as a predictor for social media advertising- a YouTube way. Multimedia Tools and Applications, 76(18), 18557-18568. https://doi.org/10.1007/s11042-016-4249-6

Harrison-Walker, L. J. (2001). E-complaining: A content analysis of an Internet complaint form. Journal of Services Marketing, 15(5), 397-412. https://doi.org/10.1108/EUM0000000005657

Hair, J., Black, W., Babin, B. y Anderson, R. (2009). Multivariate data analysis. London: Prentice Hall.

Hoef, J. y Boveng, P. (2007). Quasi-Poisson vs. negative binomial regression: How should we model overdispersed count data? Ecology, 88(11), 2766-2772. https://doi.org/10.1890 / 07-0043.1

Huete, N. (2017). A literature review of word of mouth and electronic word of mouth: Implications for consumer behavior. Frontiers in Psychology, 8, 1-4. https://doi.org/10.3389/fpsyg.2017.01256

Jaeger, S. R., Vidal, L., Kam, K. y Ares, G. (2017). Can emoji be used as a direct method to measure emotional associations to food names? Preliminary investigations with consumers in USA and China. Food Quality and Preference, 56, 38-48. https://doi.org/10.1016/j.foodqual.2016.09.005

Jahn, B. y Kunz, W. (2012). How to transform consumers into fans of your brand. Journal of Service Management, 23(3), 344-361. https://doi.org/10.1108/09564231211248444

Jünger, J. y Keyling, T. (2018). An application for generic data retrieval through APIs. Recuperado el 05 de mayo de 2020, de https://scholar.google.com/citations?user=sA15C70AAAAJ&hl=de

Katz, E. (1959). Mass communication research and the study of culture. Studies in Public Communication, 2, 1-6.

Khan, N. (2020). Outbreak of covid-19: Its impact on brand health and marketing communications. Recuperado el 21 de abril de 2020, de https://businessreview.iba.edu.pk/covid19/articles/nida-v3.pdf

Krippendorff, K. (2018). Content analysis. An introduction to its methodology (4.a ed). New York: Sage Publishing.

Kuo, P., Zhang, L. y Cranage, D. (2015). What you get is not what you saw: Exploring the impacts of misleading hotel website photos. International Journal of Contemporary Hospitality Management, 27(6), 1301-1319. https://doi.org/10.1108/ijchm-11-2013-0532

Li, L., Zhang, Q., Wang, X., Zhang, J., Wang, T., Gao, T..., Wang, F. (2020). Characterizing the propagation of situational information in social media during COVID-19 epidemic: A case study on Weibo. IEEE Transactions on Computational Social Systems, 7(2), 556-562. https://doi.org/10.1109/TCSS.2020.2980007

Liu, Y. (2006). Word of mouth for movies: Its dynamics and impact on box office revenue. Journal of Marketing, 70(3), 74-89. https://doi.org/10.1509/jmkg.70.3.74

Long, J. (1997). Regression models for categorical and limited dependent variables. New York: Sage Publishing.

Long, J. y Freese, J. (2006). Regression models for categorical dependent variables using Stata (2.a ed). Texas: Stata Press.

Marketing Science Institute (2018). 2018-2020 Research priorities: Marketers’ strategic imperatives. Recuperado el 27 de noviembre de 2020, de https://www.msi.org/articles/marketers-top-challenges- 2018-2020-research-priorities/

Martínez, J. y Bigné, E. (2017). The value of marketer-generated content on social network sites: Media antecedents and behavioral response. Journal of Electronic Commerce Research, 18(1), 52-72.

Melián, S. y Bulchand, J. (2017). Extending the scope of hotel client reactions to employee injustice: Hotel employer reviews on the Internet. International Journal of Hospitality Management, 63, 93-100. https://doi.org/10.1016/j.ijhm.2017.03.003

Mutinga, D., Moorman, M. y Smit, E. (2011). Introducing COBRAs: Exploring motivations for Brand-Related social media use. Journal of Advertising, 30(1), 13-46. https://doi.org/10.2501/IJA-30-1-013-046

Navarro, A., Utzet, F., Puig, P., Caminal, J. y Martín, M. (2001). La distribución binomial negativa frente a la de Poisson en el análisis de fenómenos recurrentes. Gaceta Sanitaria, 15(5), 447-452. https://doi.org/10.1016/S0213-9111(01)71599-3

Noland, A. (2020). Like, share, retweet: Testing competing models of the theory of planned behavior to predict slacktivism engagement. Journal of Nonprofit & Public Sector Marketing, 32(3), 264-285. https://doi-org.bd.univalle.edu.co/10.1080/10495142.2019.1589626

Osorio, C. F., Peláez, J. y Rodríguez, A. (2020). Cantidad adecuada de emojis y caracteres para generar eWOM en Facebook. Suma de Negocios, 11(24), 24-33.

PWC. (2020). COVID-19: Confidently Navigate through Coronavirus Crisis. How today’s response can position your business to thrive tomorrow. Recuperado el 22 de abril de 2020, de https://www.pwc.com/us/en/library/covid-19/crisis-management.html

Ray, A. (2020). Beware of virtue signaling in brand communications about COVID-19. Recuperado el 21 de marzo de 2020, de https://www.socialmediatoday.com/news/beware-of-virtue-signaling-in-brand-communications-about-covid-19/574168/

Restrepo, O. (2020), “Somos más fuertes”: La propuesta de Renault frente al Covid-19 en Colombia. Recuperado el 22 de abril de 2020, de https://www.elcarrocolombiano.com/industria/somos-mas-fuertes-la-propuesta-de-renault-frente-al-covid-19-en-colombia/

Rosario, A., Sotgiu, F., De Valck, K. y Bijmolt, T. (2016). The effect of electronic word of mouth on sales: A meta-analytic review of platform, product, and metric factors. Journal of Marketing Research, 53(3), 297-318. https://doi.org/10.1509/jmr.14.0380

Schultz, C. (2017). Proposing to your fans: Which brand post characteristics drive consumer engagement activities on social media brand pages? Electronic Commerce Research and Applications, 26, 23-34. https://doi.org/10.1016/j.elerap.2017.09.005

Severin, W. y Tankard, J. (2000). Communication theories: Origins, methods and uses in the mass media (5.a ed.). Reading, Massachusetts: Addison Wesley.

Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6(2), 461-464.

Social Bakers (2020). March 2020 Social Marketing Report Colombia. Recuperado el 26 de abril de 2020, de https://www.socialbakers.com/resources/reports/colombia/2020/march

Stojanovic, I., Andreu, L. y Curras, R. (2018). Effects of the intensity of use of social media on brand equity: An empirical study in a tourist destination. European Journal of Management and Business Economics, 27(1), 83-100. https://doi.org/10.1108/EJMBE-11-2017-0049

Tafesse, W. (2015). Content strategies and audience response on Facebook brand pages. Marketing Intelligence and Planning, 33(6), 927-943. https://doi.org/10.1108/MIP-07-2014-0135

Tsao, W. C., Hsieh, M. T. y Lin, T. M. (2016). Intensifying online loyalty! The power of website quality and the perceived value of consumer/seller relationship. Industrial Management & Data Systems, 116(9), 1987- 2010. https://doi.org/10.1108/IMDS-07-2015-0293

Vieweg, S., Hughes, A., Starbird, K. y Palen, L. (2010). Microblogging during two natural hazards events. En: Conference Human Factors Computting Systems (pp. 1079-1088). https://doi.org/10.1145/1753326.1753486

Witte, K. (1992). Putting the fear back into fear appeals: The extended parallel process model. Communication Monographs, 59(4), 329-349. https://doi.org/10.1080/03637759209376276

Yeh, Y. y Choi, S. (2011). MINI-lovers, maxi-mouths: An investigation of antecedents to eWOM intention among brand community members. Journal of Marketing Communications, 17(3), 145-162. https://doi.org/10.1080/13527260903351119

Published

2021-01-29

How to Cite

eWOM in times of COVID-19: An empirical analysis of Colombian brands on Facebook. (2021). Estudios Gerenciales, 37(158), 28-36. https://doi.org/10.18046/j.estger.2021.158.4267