PROFIT MAXIMIZATION AT WASTEWATER TREATMENT PLANTS. THE CASE OF VALENCIA (SPAIN) (Article published in Spanish)
DOI:
https://doi.org/10.1016/S0123-5923(11)70173-5Keywords:
Financing, wastewater, fuzzy goal-based programAbstract
The main purpose of this paper is to design a new way to maximize the profit of wastewater treatment plants (WWTP). The establishment of multiple goals impedes their simultaneous achievement. As a result, it will be enough to achieve a certain degree of satisfaction of each goal. Sometimes this approach can be extremely difficult, so minor violations of some restrictions are exceptionally allowed. Fuzzy goal-based scheduling can be considered a suitable tool for these kinds of problems. In short, WWTPs will have a suitable tool for achieving profit maximization, and, at the same time, there will be a new system to measure efficiency in the sector.
Downloads
References
Charnes, A. y Cooper, W.W. (1961). Management models and industrial applications of linear programming. New York, NY: Wiley.
Dauer, J.P. y Krueger, R.J. (1980). A multiobjective optimization model for water resources planning. Applied Mathematical Modelling, 4(3), 171-175.
Deakin, E.B. y Maher, M.W. (1991). Cost accounting. Home-Homewood, IL: Irwin.
EPSAR. (s/f). Elx (Algoros). Recuperado de http://www.epsar.gva.es/sanejament/instalaciones/edar.aspx?id=105
Haimes, Y.Y., Tarvainen, K., Shima, T. y Thadathil, J. (1990). Hierarchical Multiobjective Analysis of Large-Scale Systems. New York, NY: Hemisphere Publishing Corporation.
Hemmer, T. (1996). Allocations of sunk capacity costs and joint costs in a linear principal-agent model. Accounting Review, 71(3), 419-432.
Herrera, M.F. y Osorio, J.C. (2006). Modelo para la gestión de proveedores utilizando AHP difuso. Estudios Gerenciales, 22(99), 69-88. Recuperado de http://www.icesi.edu.co/biblioteca_digital/bitstream/item/810/2/Modelo_gestion_proveedores_utilizando_AHP_difuso.PDF
Horngren, C.T., Foster, G. y Datar, S.M. (1996). Contabilidad de Costos. Un Enfoque Gerencial. México: Prentice Hall Hispanoamericana.
Lai, Y.J., Lin, T.Y. y Hwang, C.L. (1994). TOPSIS for MODM. European Journal of Operational Research, 76(3), 486-500.
Lee, C.S. y Wen, C.G. (1995). An economic and environmental balance in a river basin using interactive multiobjective optimization. Journal of Environmental Science and Health (Part A), 30(8), 1727-1748.
Lee, C.S. y Wen, C.G. (1996). Application of multiobjective programming to water quality management in a River Basin. Journal of Environmental Management, 47(1), 11-26.
Lee, C.S. y Wen, C.G. (1997). Fuzzy goal programming approach for water quality management in a river basin. Fuzzy Sets and System, 89(2), 181-192.
Loucks, D.P. (1977). An application of interactive multiobjective water resources planning. Interfaces, 8(1), 70-75.
Medina, S. y Manco, O. (2007). Diseño de un sistema experto difuso: evaluación de riesgo crediticio en firmas comisionistas de bolsa para el otorgamiento de recursos financieros. Estudios Gerenciales, 23(104), 101-129. Recuperado de http://bibliotecadigital.icesi.edu.co/biblioteca_digital/bitstream/item/1274/1/Diseno_sistema_experto_difuso.pdf
Méndez, J.A. y Méndez, J.M. (2010). Tasas por utilización del agua instrumento de asignación eficiente del agua o mecanismo de financiación de la gestión ambiental? Estudios Gerenciales, 26(115), 93-115. Recuperado de http://bibliotecadigital.icesi.edu.co/biblioteca_digital/bitstream/item/4382/1/5Tasas_utilizacion.pdf
Norma Internacional de Contabilidad No. 2 -NIC2. (2005). Software. Recuperado de http://www.normasinternacionalesdecontabilidad.es/nic/pdf/NIC02.pdf
Real Decreto Legislativo 1/2001, por el que se aprueba el Texto Refundido de la Ley de Aguas, Ministerio de Medio Ambiente. (2001). Recuperado de http://noticias.juridicas.com/base_datos/Admin/rdleg1-2001.html
Real Decreto Legislativo 11/1995, por el que se establecen las Normas Aplicables al Tratamiento de las Aguas Residuales Urbanas, Gobierno. (1995).
Rommelfanger, H. y Slowinski, R. (1998). R. Fuzzy linear programming with single or multiple objective functions. En R. Solowinski (Eds.), Fuzzy Sets in Decision analysis. Operational Research and Statistics (pp. 179-214). Boston, MA: Kuwler Academic Publishers.
Steuer, R.E. y Wood, E.F. (1986). On the 0-1 implementation of the Tchebycheff solution approach: a water quality illustration. Large Scale Systems, 10(1), 243-255.
Terceño, A, Brotons, J.M. y Trigueros, J.A. (2007a). El saneamiento de las aguas residuales y sus costes. Una propuesta de financiación. Revista Iberoamericana de Contabilidad de Gestión, 9(5), 185-208.
Terceño, A, Brotons, J.M. y Trigueros, J.A. (2007b). Propuesta de un modelo integral de financiación de las empresas depuradoras de aguas residuales. Actualidad Contable Faces, 10(15), 155-165.
Terceño, A, Brotons, J.M. y Trigueros, J.A. (2009). Evaluación de las necesidades hídricas en España. Ingeniería Hidráulica en México, 24(4), 7-22.
Wang, X. (1996). Joint products and responses to a profit tax: the case of endogenous cost allocation. Public Finance Quarterly, 24(4), 494-500.
Zadeh, L.A. (1965). Fuzzy sets. Information and control, 8, 338-353.
Zimmermann, H.J. (1978). Fuzzy programming and linear programming with several objective functions. Fuzzy sets and systems, 1(1), 45-55.
Downloads
Published
Issue
Section
License
Articles are the sole responsibility of their authors, and will not compromise Icesi’s University principles or policies nor those of the Editorial Board of the journal Estudios Gerenciales. Authors authorize and accept the transfer of all rights to the journal, both for its print and electronic publication. After an article is published, it may be reproduced without previous permission of the author or the journal but the author(s), year, title, volume, number and range of pages of the publication must be mentioned. In addition, Estudios Gerenciales must be mentioned as the source (please, refrain from using Revista Estudios Gerenciales).