Percepción de la calidad en restaurantes: un análisis mixto con redes neuronales

Autores/as

  • Asdrúbal López-Chau Profesor de Tiempo Completo, CU UAEM Zumpango, Laboratorio de Tecnologías Computacionales Aplicadas, Universidad Autónoma del Estado de México, Zumpango, México.
  • J. Patricia Muñoz-Chávez Profesora de Tiempo Completo, Área Académica de Desarrollo de Negocios, Universidad Tecnológica de la Zona Metropolitana del Valle de México, Tizayuca Hidalgo, México.
  • David Valle-Cruz Profesor Investigador, Unidad Académica Profesional Tianguistenco, Universidad Autónoma del Estado de México, Santiago Tianguistenco, México.

DOI:

https://doi.org/10.18046/j.estger.2022.165.5235

Palabras clave:

calidad, restaurantes, turismo, redes neuronales artificiales, inteligencia artificial

Resumen

Este estudio se centra en identificar los factores que influyen en la percepción de la calidad del consumidor en restaurantes de servicio a mesa en el pueblo mágico Real del Monte, Hidalgo, México. La metodología se basa en dos perspectivas, en primer lugar, en el análisis de los factores más importantes de los resultados de una encuesta de 22 ítems por medio de redes neuronales artificiales aplicada a 320 comensales y, en segundo lugar, en la aplicación de entrevistas semiestructuradas a ocho comensales. Los hallazgos muestran que los aspectos fundamentales que influyen en la percepción de los consumidores son la capacidad del personal para responder preguntas, la música de fondo, así como la calidad y el sabor de los alimentos.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Akhil, A. y Suresh, M. (2021). Assessment of service quality in restaurant using multi-grade fuzzy and importance performance analysis. Materials Today: Proceedings [preprint]. https://doi.org/10.1016/j.matpr.2021.01.767

Albrecht, J. Danielmeier, T. y Boudreau, P. (2019). The importance of architecture in food and drink experiences within a tourism context. Journal of Gastronomy and Tourism, 4(1), 41-50. https://doi.org/10.3727/216929719X15657857907789

Antón, C., Camarero, C. y Laguna-García, M. (2017). Towards a new approach of destination royalty drivers: Satisfaction, visit intensity and tourist motivation. Current Issues in Tourism, 20(3), 238-260. https://doi.org/10.1080/13683500.2014.936834

Antun, J.M., Frash, R.E., Costen, W. y Runyan, R. (2010). Accurately assessing expectations most important to restaurant patrons: The creation of the DinEX scale. Journal of Foodservice Business Research, 13(4), 360-379. https://dx.doi.org/10.1080/15378020.2010.524539

Aragón, C. L., González, A. y Lagarda-Leyva, E. A. (2022). Cultura organizacional y competitividad de las empresas restauranteras y hoteleras de Sonora, México. Ciencias Administrativas, 10(19), 1-13. https://doi.org/10.24215/23143738e095

Assadi, D. y Flandrin, A. (2009). L´impact de la musique sur le comportament d´achat. Cahiers du Ceren, (26). 2-16.

Barber, N. y Scarcelli, J. (2009). Clean restrooms: how important are they to restaurant consumers? Journal of Foodservice, 20(6), 309-320. https://doi.org/10.1111/j.1748-0159.2009.00155.x

Barbosa, D. M. E. y Ayala, A. H. (2014). Los determinantes de la orientación exportadora y los resultados en las pymes exportadoras en Colombia. Estudios Gerenciales, 30(133), 430-440. https://dx.doi.org/10.1016/j.estger.2014.05.002

Callejo, J. (2002). Observación, entrevista y grupo de discusión: el silencio de tres prácticas de investigación. Revista Española de Salud Pública, 76,(5), 409-422.

Campos-Vázquez, R. M., y Esquivel, G. (2020). Niveles y Patrones de Consumo en la Era del COVID-19. Revista Nexos en Línea, 6. https://www.nexos.com.mx/?p=48034

Chen, C-F. y Chen, F-S. (2010). Experience quality, perceive value, satisfaction, and behavioral intentions for heritage tourists. Tourism Management, 31(1), 29-35. https://doi.org/10.1016/j.tourman.2009.02.008

Clemente-Ricolfe, J. S. (2016). Atributos relevantes de la calidad en el servicio y su influencia en el comportamiento poscompra. El caso de las hamburgueserías en España. Innovar, 26(62), 69-78. https://doi.org/10.15446/innovar.v26n62.59389

Contreras, T. J. C., Flores, S. G. Z., Hernández, I. Z. y Zamorano, Z. M. V. (2020). Desafíos del turismo en el noroeste de México entre Ciudad Juárez, Chihuahua y San Luis Río Colorado ante la incertidumbre del COVID 19. En Conferencia Internacional sobre Turismo, Tecnología y Sistemas (pp. 509-520). Springer.

Folgieri, R., Baldigara, T. y Mamula, M. (2017). Artificial neural networks-based econometric models for tourism demand forecasting. ToSEE-Tourism in Southern and Eastern Europe, 4, 169-182. https://dx.doi.org/10.20867/tosee.04.10

Garson, G. D. (1991). Interpreting neural network connection weights. AI Expert. Scientific Research an Academic Publisher, (6). 47-51.

Graupe, D. (2013). Principles of artificial neural networks (vol. 7). World Scientific.

Ha, J. y Jang, S. (2010). Effects of service quality and food quality: The moderating role of atmospherics in an ethnic restaurant segment. International Journal of Hospitality Management, 29(3), 520-529. https://doi.org/10.1016/j.ijhm.2009.12.005

Hernández-Rojas, R. D., Folgado-Fernandez, J. A. y Palos-Sánchez, P. R. (2021). Influence of the restaurant brand and gastronomy on tourist loyalty. A study in Córdoba (Spain). International Journal of Gastronomy and Food Science, 23. https://doi.org/10.1016/j.ijgfs.2021.100305

Hirudayaraj, M. y Clay, C. (2019). Experiences of women veterans within the private sector: Examining the intersection of gender and veteran status. Human Resource Development Quarterly, 30(4), 473-494. https://doi.org/10.1002/hrdq.21367

Horng, J. S., Chou, S. F., Liu, C. H. y Tsai, C. Y. (2013). Creativity, aesthetics and eco-friendliness: A physical dining environment design synthetic assessment model of innovative restaurants. Tourism Management, 36, 15-25. https://dx.doi.org/10.1016/j.tourman.2012.11.002

Hu, Y. C., Jiang, P. y Lee, P. C. (2019). Forecasting tourism demand by incorporating neural networks into Grey-Markov models. Journal of the Operational Research Society, 70(1), 12-20. https://doi.org/10.1080/01605682.2017.1418150

Hwang, J. y Zhao, J. (2010). Factors influencing customer satisfaction or dissatisfaction in the restaurant business using answertree methodology. Journal of Quality Assurance in Hospitality & Tourism, 11(2), 93-110. https://doi.org/10.1080/15280081003800355

Jia, S. S. (2020). Motivation and satisfaction of Chinese and US tourists in restaurants: A cross-cultural text mining of online reviews. Tourism Management, 78. https://doi.org/10.1016/j.tourman.2019.104071

Kim, J., Wei, S. y Ruys, H. (2003). Segmenting the market of West Australian senior tourists using an artificial neural network. Tourism Management, 24(1), 25-34. https://doi.org/10.1016/S0261-5177(02)00050-X

McCulloch, W. S. y Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The Bulletin of Mathematical Biophysics, 5(4), 115-133.

Mira, J., Pérez-Jover, V., Lorenzo, J. y Vitaller, J. (2002). La investigación cualitativa: una alternativa también válida. Atención primaria, 34(4), 161-165.

Namkung, Y. y Jang, S. (2008). Are highly satisfied restaurant customers really different? A quality perception perspective. International Journal of Contemporary Hospitality Management, 20(2), 142-155. https://doi.org/10.1108/09596110810852131

Negnevitsky, M. (2005). Artificial intelligence: A guide to intelligent systems. Pearson Education.

Olalla, G. (2020). COVID-19: Un único aspecto positivo para el turismo. https://www.hosteltur.com/comunidad/003987_covid-19-un-unico-aspectopositivo-para-el-turismo.html

Organización Mundial del Turismo. (2020). Barómetro OMT del turismo mundial. UNWTO, 18(2). https://www.unwto.org/es/taxonomy/term/347

Orgaz, F. y Moral, S. (2016). El turismo como motor potencial para el desarrollo económico de zonas fronterizas en vías de desarrollo. Un estudio de caso. El Periplo Sustentable, 31, 1-17.

Palmer, A., Montano, J. J. y Sesé, A. (2006). Designing an artificial neural network for forecasting tourism time series. Tourism Management, 27(5), 781-790.

Pitarque, A., Ruiz, J. C. y Roy, J. F. (2000). Las redes neuronales como herramientas estadísticas no paramétricas de clasificación. Psicothema, 12(Su2), 459-463.

Pérez-Gálvez, J., Medina-Viruel, M., Jara-Alba, C. y López-Guzmán, T. (2020). Segmentation of food market visitors in World Heritage Sites. Case study of the city of Córdoba (Spain). Current Issues in Tourism, 4(8), 1139-1153. https://doi.org/10.1080/13683500.2020.1769570

Pérez-Ramírez, C. y Antolín-Espinoza, D. (2016). Programa pueblos mágicos y desarrollo local: Actores, dimensiones y perspectivas en El Oro, México. Estudios sociales, 25(47), 219-242.

Quecedo, R. y Castaño, C. (2002). Introducción a la metodología de la investigación cualitativa. Revista de Psicodidáctica, (14), 5-40.

Rodríguez, R. M. A. S., Pulido-Fernández, J. I. y Herrera, I. M. R. (2017). El producto turístico en los Pueblos Mágicos de México. Un análisis crítico de sus componentes. Revista de Estudios Regionales, (108), 125-163.

Ryu, K. y Han, H. (2010). Influence of the quality of food, service, and physical environment on customer satisfaction and behavioral intention in quick-casual restaurants: Moderating role of perceived price. Journal of Hospitality & Tourism Research, 34(3), 310-329.

Ryu, K. y Han, H. (2011). New or repeat customers: how does physical environment influence their restaurant experience? International Journal of Hospitality Management, 30(3), 599-611.

Sabir, R., Ghafoor, O., Hafeez, I., Akhtar, N. y Rehman, A. (2014). Factors affecting customers satisfaction in restaurants industry in Pakistan. International Review of Management and Business Research, 3(2), 869-876.

Seo, S. y Yun, N. (2015). Multi-dimensional scale to measure destination food image: Case of Korean food. British Food Journal, 117(12), 2914-2929. https://doi.org/10.1108/BFJ-03-2015-0114

Slack, N., Singh, G., Ali, J., Lata, R., Mudaliar, K. y Swamy, Y. (2020). Influence of fast-food restaurant service quality and its dimensions on customer perceived value, satisfaction and behavioural intentions. British Food Journal, 123(4), 1324-1344. https://doi.org/10.1108/BFJ-09-2020-0771

Sultan, I. (2019). Religious tourism and its impact on local economy and environment: A case study on Dakshineswar and Adyapeath, West Bengal, India. International Journal of Humanities and Social Science, 6(6), 85-91. https://doi.org/10.14445/23942703/IJHSS-V6I6P112

Torres, M. y Mora, C. (2017). Experiencia de consumo y los niveles de satisfacción de los usuarios de establecimientos de comida rápida en el municipio Libertador del estado Mérida, Venezuela. Visión Gerencial, 3(1), 43-58.

Tuzunkan, D. y Albayrak, A. (2016). The importance of restaurant physical environment for Turkish customers. J Tourism Res Hospitality 5(1). https://doi.org/10.4172/2324-8807.1000154

Uysal, M. y El Roubi, M. S. (1999). Artificial neural networks versus multiple regression in tourism demand analysis. Journal of Travel Research, 38(2), 111-118.

Van der Walt, R., Greyling, M. y Kotzé, T. (2014). Customers' perceptions of restaurant experience in Gauteng. Contemporary Management in Theory and Practice, 149-157.

Valle-Cruz, D., Gil-Garcia, J. R. y Fernandez-Cortez, V. (2020). Towards smarter public budgeting? Understanding the potential of artificial intelligence techniques to support decision making in government. En dg.o 2020: 21th Annual International Conference on Digital Government Research (dg.o 2020), junio 15-19, 2020, Seoul, Korea. ACM, New York, EE. UU. https://doi.org/10.1145/3396956.3396995

Vareiro, L. Ribeiro, J. y Remoaldo, P. (2019). What influences a tourist to return to a cultural destination? International Journal of Tourism Research, 21(2), 280-290. https://doi.org/10.1002/jtr.2260

Vega-Falcón, V., Castro-Sánchez, F. y Romero-Fernández, A. J. (2020). Impacto de la Covid-19 en el turismo mundial. Revista Universidad y Sociedad, 12(S1), 207-216.

Vera, J. y Trujillo, A. (2017). Escala mexicana de calidad en el servicio en restaurantes (EMCASER). Innovar, 27(63), 43-60. https://doi.org/10.15446/innovar.v26n63.60665.

Weckman, G. R., Dravenstott, R. W., Young II, W. A., Ardjmand, E., Millie, D. F. y Snow, A. P. (2020). A prescriptive stock market investment strategy for the restaurant industry using an artificial neural network methodology. En Deep Learning and Neural Networks: Concepts, Methodologies, Tools, and Applications (pp. 217-237). IGI Global. https://doi.org/10.4018/IJBAN.2016010101

Xue, L. y Kerstetter, D. (2018). Rural tourism and livelihood change: and emic perspective. Journal of Hospitality & Tourism Research, 20(10), 1-22. https://doi.org/10.1177/1096348018807289

Youn, H. y Kim, J-H. (2017). Effects of ingredients, names and stories about food origins on perceived authenticity and purchase intentions. International Journal of Hospitality Management, (63), 11-21. https://doi.org/10.1016/j.ijhm.2017.01.002

Zeithaml, V., Berry, L. y Parasuraman, A. (1988). Communication and control processes in the delivery of service quality. Journal of Marketing, 52, 35-48.

Zhang, T., Chen, J. y Hu, B. (2019). Authenticity, quality, and loyalty: Local food and sustainable tourism experience. Sustainability, 11(12), 34-37. https://doi.org/10.3390/su11123437

Zhang, H., Fu, X., Cai, L. y Lu, L. (2014). Destination image and tourist loyalty: A meta-analysis. Tourism Management, (40), 213-223. https://doi.org/10.1016/j.tourman.2013.06.006

Zheng, B., Thompson, K., Lam, S. S., Yoon, S. W. y Gnanasambandam, N. (2013). Customers' behavior prediction using artificial neural network. En IIE Annual Conference. Proceedings (p. 700). Institute of Industrial and Systems Engineers (IISE).

Publicado

2022-11-03

Número

Sección

Artículo de investigación

Cómo citar

Percepción de la calidad en restaurantes: un análisis mixto con redes neuronales. (2022). Estudios Gerenciales, 38(165), 449-463. https://doi.org/10.18046/j.estger.2022.165.5235