Mercado energético pos-SARS-CoV-2: relación estructural de sus factores críticos
DOI:
https://doi.org/10.18046/j.estger.2021.158.4396Palabras clave:
SARS-CoV-2, mercado energético, COVID-19, modelado estructural interpretativo, matriz de impactos cruzadosResumen
El objetivo de este artículo consistió en modelar estructuralmente los factores de alta prioridad ante el impacto del coronavirus 2 del síndrome respiratorio agudo severo en el mercado energético. Para ello, el método se fundamentó en el modelado estructural interpretativo y en la matriz de impactos cruzados-multiplicación aplicada a una clasificación. Se propone un modelo de 12 factores estructurados jerárquicamente en seis niveles, en el que las preferencias de consumo, las modificaciones regulatorias y normativas, las restricciones políticas y las estrategias de planeación son las de mayor influencia en el mercado energético desde la perspectiva de México. Derivado de ello, se sugiere transitar hacia una mayor participación de actores públicos y privados en vectores de energía renovable.
Descargas
Referencias
Agrawal, N. M. (2019). Modeling Deming’s quality principles to improve performance using interpretive structural modeling and MICMAC analysis. International Journal of Quality and Reliability Management, 36(7), 1159-1180. https://doi.org/10.1108/IJQRM-07-2018-0204
Alizadeh, R., Lund, P. D., Beynaghi, A., Abolghasemi, M. y Maknoon, R. (2016). An integrated scenario-based robust planning approach for foresight and strategic management with application to energy industry. Technological Forecasting and Social Change, 104, 162-171. https://doi.org/10.1016/j.techfore.2015.11.030
Arcade, J., Godet, M., Meunier, F. y Roubelat, F. (2004). Análisis estructural con el método Micmac y estrategia de los actores con el método Mactor. Buenos Aires: BCNA.
Banovac, E., Glavić, M. y Tešnjak, S. (2009). Establishing an efficient regulatory mechanism. Prerequisite for successful energy activities regulation. Energy, 34(2), 178-189. https://doi.org/10.1016/j.energy.2008.10.002
International Finance Corporation (2020). The Impact of COVID-19 on the Power Sector. Recuperado el 11 de junio de 2020, de: https://n9.cl/l88g3
BP. (2020). Statistical Review of World Energy, 2020 | 69th Edition. Bp, 66. Recuperado el 13 de agosto de 2020, de: https://n9.cl/b621
Bridge, G., Özkaynak, B. y Turhan, E. (2018). Energy infrastructure and the fate of the nation: Introduction to special issue. Energy Research y Social Science, 41, 1-11. https://doi.org/10.1016/j.erss.2018.04.029
Campiglio, E. (2016). Beyond carbon pricing: The role of banking and monetary policy in financing the transition to a low-carbon economy. Ecological Economics, 121, 220-230. https://doi.org/10.1016/j.ecolecon.2015.03.020
Campiglio, E., Dafermos, Y., Monnin, P., Ryan-Collins, J., Schotten, G. y Tanaka, M. (2018). Climate change challenges for central banks and financial regulators. Nature Climate Change, 8(6), 462-468. https://doi.org/10.1038/s41558-018-0175-0
Carbonara, N. y Pellegrino, R. (2018). Public-private partnerships for energy efficiency projects: A win-win model to choose the energy performance contracting structure. Journal of Cleaner Production, 170, 1064-1075. https://doi.org/10.1016/j.jclepro.2017.09.151
Cowell, R. y Devine-Wright, P. (2018). A ‘delivery-democracy dilemma’? Mapping and explaining policy change for public engagement with energy infrastructure. Journal of Environmental Policy y Planning, 20(4), 499-517. https://doi.org/10.1080/1523908X.2018.1443005
Chander, M., Jain, S. K. y Shankar, R. (2013). Modeling of information security management parameters in Indian organizations using ISM and MICMAC approach. Journal of Modelling in Management, 8(2), 171-189. https://doi.org/10.1108/JM2-10-2011-0054
Debnath, K. B. y Mourshed, M. (2018). Challenges and gaps for energy planning models in the developing-world context. Nature Energy, 3(3), 172-184. http://dx.doi.org/10.1038/s41560-018-0095-2
del Pilar, E. C., Alegado, I. y Bongo, M. F. (2019). Structural relationships among critical failure factors of microbusinesses. Journal of Small Business and Enterprise Development, 27(1), 148-174. https://doi.org/10.1108/JSBED-01-2019-0001
Diabat, A. y Govindan, K. (2011). An analysis of the drivers affecting the implementation of green supply chain management. Resources, Conservation and Recycling, 55(6), 659-667. https://doi.org/10.1016/j.resconrec.2010.12.002
Dube, A. S. y Gawande, R. S. (2016). Analysis of green supply chain barriers using integrated ISM-fuzzy MICMAC approach. Benchmarking, 23(6), 1558-1578. https://doi.org/10.1108/BIJ-06-2015-0057
European Parliament (2020). Towards a more resilient Europe post-coronavirus: An initial mapping of structural risks facing the EU. Recuperado el 7 de agosto de 2020, de: https://n9.cl/s9b8l
Filipović, S., Radovanović, M. y Golušin, V. (2018). Macroeconomic and political aspects of energy security - Exploratory data analysis. Renewable and Sustainable Energy Reviews, 97, 428-435. https://doi.org/10.1016/j.rser.2018.08.058
Foundational Economy Collective - FEC. (2020). ¿Qué viene después de la pandemia? Un programa de diez puntos para la renovación fundamental. El Trimestre Económico, 87(347), 899-917. https://doi.org/10.20430/ete.v87i347.1109
Gan, X., Chang, R., Zuo, J., Wen, T. y Zillante, G. (2018). Barriers to the transition towards off-site construction in China: An Interpretive structural modeling approach. Journal of Cleaner Production, 197, 8-18. https://doi.org/10.1016/j.jclepro.2018.06.184
Gasser, P. (2020). A review on energy security indices to compare country performances. Energy Policy, 139, 111339, 1-17. https://doi.org/10.1016/j.enpol.2020.111339
Gillingham, K. T., Knittel, C. R., Li, J., Ovaere, M. y Reguant, M. (2020). The Short-run and Long-run Effects of Covid-19 on Energy and the Environment. Joule, 4(7), 1337-1349. https://doi.org/10.1016/j.joule.2020.06.010
Godet, M., Durance, P. y Gerber, A. (2013). Strategic foresight la prospective use and misuse of scenario building. The Circle of Future Entrepreneurs. Recuperado el 3 de marzo de 2020, de: https://n9.cl/iw9q
Gössling, S. y Higham, J. (2020). The low-carbon imperative: Destination management under urgent climate change. Journal of Travel Research, 1-13. https://doi.org/10.1177/0047287520933679
Heiskanen, E., Johnson, M., Robinson, S., Vadovics, E. y Saastamoinen, M. (2010). Low-carbon communities as a context for individual behavioural change. Energy Policy, 38(12), 7586-7595. https://dx.doi.org/10.1016/j.enpol.2009.07.002
Herring, H. y Roy, R. (2007). Technological innovation, energy efficient design and the rebound effect. Technovation, 27(4), 194-203. https://doi.org/10.1016/j.technovation.2006.11.004
Jackson, R. B., Vengosh, A., Carey, J. W., Davies, R. J., Darrah, T. H., O'sullivan, F. y Pétron, G. (2014). The environmental costs and benefits of fracking. Annual review of Environment and Resources, 39, 327-362. https://doi.org/10.1146/annurev-environ-031113-144051
Johnson, N., Krey, V., McCollum, D. L., Rao, S., Riahi, K. y Rogelj, J. (2015). Stranded on a low-carbon planet: Implications of climate policy for the phase-out of coal-based power plants. Technological Forecasting and Social Change, 90, 89-102. https://doi.org/10.1016/j.techfore.2014.02.028
Kannan, G., Pokharel, S. y Kumar, P. S. (2009). A hybrid approach using ISM and fuzzy TOPSIS for the selection of reverse logistics provider. Resources, Conservation and Recycling, 54(1), 28-36. https://doi.org/10.1016/j.resconrec.2009.06.004
Katz, G. J. y Kider, J. T. (2008). All-pairs shortest-paths for large graphs on the GPU. Proceedings of the SIGGRAPH/Eurographics Workshop on Graphics Hardware, 47-55.
Keenan, M. y Popper, R. (2008). Comparing foresight “style” in six world regions. Foresight, 10(6), 16-38. https://doi.org/10.1108/14636680810918568
Kisel, E., Hamburg, A., Härm, M., Leppiman, A. y Ots, M. (2016). Concept for Energy Security Matrix. Energy Policy, 95, 1-9. https://doi.org/10.1016/j.enpol.2016.04.034
Kruyt, B., van Vuuren, D. P., de Vries, H. J. M. y Groenenberg, H. (2009). Indicators for energy security. Energy Policy, 37(6), 2166-2181. https://doi.org/10.1016/j.enpol.2009.02.006
Kuzemko, C., Bradshaw, M., Bridge, G., Goldthau, A., Jewell, J., Overland, I., Scholten, D.,… y Westphal, K. (2020). Covid-19 and the politics of sustainable energy transitions. Energy Research and Social Science, 68, 101685. https://doi.org/10.1016/j.erss.2020.101685
Luthra, S., Kumar, S., Kharb, R., Ansari, M. F. y Shimmi, S. L. (2014). Adoption of smart grid technologies: An analysis of interactions among barriers. Renewable and Sustainable Energy Reviews, 33, 554-565. https://doi.org/10.1016/j.rser.2014.02.030
Moret, S., Babonneau, F., Bierlaire, M. y Maréchal, F. (2020). Decision support for strategic energy planning: A robust optimization framework. European Journal of Operational Research, 280(2), 539-554. https://doi.org/10.1016/j.ejor.2019.06.015
Mundaca, G. (2017). Energy subsidies, public investment and endogenous growth. Energy Policy, 110, 693-709. https://doi.org/10.1016/j.enpol.2017.08.049
Nazarko, J., Ejdys, J., Halicka, K., Nazarko, Ł., Kononiuk, A. y Olszewska, A. (2017). Factor Analysis as a tool supporting STEEPVL approach to the identification of driving forces of technological innovation. Procedia Engineering, 182, 491-496. https://doi.org/10.1016/j.proeng.2017.03.142
Peterson, G. D., Cumming, G. S. y Carpenter, S. R. (2003). Scenario planning: A tool for conservation in an uncertain world. Conservation Biology, 17(2), 358-366. https://doi.org/10.1046/j.1523-1739.2003.01491.x
Polzin, F. (2017). Mobilizing private finance for low-carbon innovation. A systematic review of barriers and solutions, Renewable and Sustainable Energy Reviews, 77, 525-535. https://doi.org/10.1016/j.rser.2017.04.007
Popper, R. (2009). Mapping Foresight. Revealing how Europe and other world regions navigate into the future. In EFMN, Luxembourg: Publications Office of the European Union, European Commission (Issue November). Recuperado el 3 de abril de 2020 de: https://n9.cl/l3eew
Popper, R. y Teichler, T. (2011). 1st EFP Mapping report: Practical guide to mapping forward-looking activities (FLA) practices, players and outcomes. European Foresight Platform, 1-83. Recuperado el 5 de diciembre de 2019 de: https://n9.cl/jt1md
Organización Mundial de la Salud (2020). Coronavirus Disease (COVID-19) Pandemic. Recuperado el 13 de julio de 2020 de: https://n9.cl/t4jo8
Radovanović, M., Filipović, S. y Pavlović, D. (2017). Energy security measurement - A sustainable approach. Renewable and Sustainable Energy Reviews, 68, 1020-1032. https://doi.org/10.1016/j.rser.2016.02.010
Ramesh, A., Banwet, D. K. y Shankar, R. (2010). Modeling the barriers of supply chain collaboration. Journal of Modelling in Management, 5(2), 176-193. https://doi.org/10.1108/17465661011061014
Sagar, A. D. y Van der Zwaan, B. (2006). Technological innovation in the energy sector: RyD, deployment, and learning-by-doing. Energy policy, 34(17), 2601-2608. https://doi.org/10.1016/j.enpol.2005.04.012
Sagheer, S., Yadav, S. S. y Deshmukh, S. G. (2009). An application of interpretative structural modeling of the compliance to food standards. International Journal of Productivity and Performance Management, 58(2), 136-159. https://doi.org/10.1108/17410400910928734
Saxena, J. P., Sushil. y Vrat, P. (1992). Scenario building: A critical study of energy conservation in the Indian cement industry. Technological Forecasting and Social Change, 41(2), 121-146. https://doi.org/10.1016/0040-1625(92)90059-3
Shamshad, M., Sarim, M., Akhtar, A. y Tabash, M. I. (2018). Identifying critical success factors for sustainable growth of Indian banking sector using interpretive structural modeling (ISM). International Journal of Social Economics, 45(8), 1189-1204. https://doi.org/10.1108/IJSE-10-2017-0436
Shen, L., Song, X., Wu, Y., Liao, S. y Zhang, X. (2016). Interpretive structural modeling based factor analysis on the implementation of emission trading system in the Chinese building sector. Journal of Cleaner Production, 127, 214-227. https://doi.org/10.1016/j.jclepro.2016.03.151
Valdés, J. (2018). Arbitrariness in multidimensional energy security indicators. Ecological Economics, 145, 263-273. https://doi.org/10.1016/j.ecolecon.2017.09.002
Walker, W. E., Haasnoot, M. y Kwakkel, J. H. (2013). Adapt or perish: A review of planning approaches for adaptation under deep uncertainty. Sustainability, 5(3), 955-979. https://doi.org/10.3390/su5030955
Wang, G. H., Wang, Y. X. y Zhao, T. (2008). Analysis of interactions among the barriers to energy saving in China. Energy Policy, 36(6), 1879-1889. https://doi.org/10.1016/j.enpol.2008.02.006
Xu, X. y Zou, P. X. W. (2020). Analysis of factors and their hierarchical relationships influencing building energy performance using interpretive structural modelling (ISM) approach. Journal of Cleaner Production, 272, 122650. https://doi.org/10.1016/j.jclepro.2020.122650
Yadav, D. K. y Barve, A. (2015). Analysis of critical success factors of humanitarian supply chain: An application of Interpretive Structural Modeling. International Journal of Disaster Risk Reduction, 12, 213-225. https://doi.org/10.1016/j.ijdrr.2015.01.008
Yoshino, N. y Taghizadeh-Hesary, F. (2018). Alternatives to private finance: Role of fiscal policy reforms and energy taxation in development of renewable energy projects. En V. Anbumozhi, K. Kalirajan y F. Kimura (Eds.), Financing for low-carbon energy transition (pp. 335-357). Singapore: Springer. https://doi.org/10.1007/978-981-10-8582-6_13
Publicado
Número
Sección
Licencia
Los autores de artículos serán responsables de los mismos, y por tal no comprometen los principios o políticas de la Universidad Icesi ni las del Comité Editorial de la revista Estudios Gerenciales. Los autores autorizan y aceptan la cesión de todos los derechos a la revista Estudios Gerenciales, tanto en su publicación impresa como electrónica. Luego de publicado el artículo, puede ser reproducido sin autorización, mencionando autor(es), título, año, volumen, número y rango de páginas de la publicación, y como fuente: Estudios Gerenciales (abstenerse de usar Revista Estudios Gerenciales).