
Package ‘talkr’
November 19, 2024

Type Package

Title Plotting Conversation Data

Version 0.1.3

Description Visualisation, analysis and quality control of conversational data.
Rapid and visual insights into the nature, timing and quality of
time-aligned annotations in conversational corpora.
For more details, see
Dingemanse et al., (2022) <doi:10.18653/v1/2022.acl-long.385>.

License Apache License (>= 2)

Encoding UTF-8

VignetteBuilder knitr

RoxygenNote 7.3.2

Depends R (>= 3.5.0)

Imports cowplot, dplyr, ggplot2, ggthemes, knitr, stats, stringr,
tidyr, tidyselect

Suggests rmarkdown, testthat (>= 3.0.0), pkgdown, ggrepel, utils

Config/testthat/edition 3

NeedsCompilation no

Author Mark Dingemanse [aut, cre],
Barbara Vreede [aut],
Eva Viviani [aut],
Pablo Rodríguez-Sánchez [aut],
Andreas Liesenfeld [ctb],
Netherlands eScience Center [cph, fnd]

Maintainer Mark Dingemanse <mark.dingemanse@ru.nl>

Repository CRAN

Date/Publication 2024-11-19 11:50:03 UTC

1

https://doi.org/10.18653/v1/2022.acl-long.385

2 add_lines

Contents
add_lines . 2
calculate_timing . 3
check_columns . 3
check_talkr . 4
check_time . 4
GeomToken . 5
geom_token . 5
geom_turn . 7
get_ifadv . 9
init . 9
plot_density . 10
plot_quality . 11
plot_scatter . 11
report_stats . 12
theme_turnPlot . 12
tokenize . 13

Index 14

add_lines Add information for line-by-line visualization

Description

This function adds columns to the dataset that adds a line ID, and changes columns with timestamps
relative to the beginning of the line, so data can be visualized line-by-line. The participant column
is also adjusted to create a Y-coordinate for each speaker. The line duration is set to 60 seconds by
default.

Usage

add_lines(data, time_columns = c("begin", "end"), line_duration = 60000)

Arguments

data dataset to divide into lines

time_columns columns with timestamps that need to be adjusted to line-relative time

line_duration length of line (in ms)

Details

This transformation can be done for multiple columns with time-stamped data. Use the ‘time_columns‘
argument to supply the names of one or more columns that should be transformed.

calculate_timing 3

Value

data set with added columns: ‘line_id‘, ‘line_participant‘, and ‘line_column‘ for every column in
‘time_columns‘

calculate_timing Calculate conversation properties

Description

A dataframe is generated with conversation properties related to timing. This data is made for
quality control purposes only, and does not contain sophisticated transition calculation methods.
For this, we refer to the python package ‘scikit-talk‘.

Usage

calculate_timing(data)

Arguments

data talkr data frame

Value

data frame containing the UIDs and calculated columns turn_duration, transition_time

check_columns Check the presence of necessary columns in a dataset

Description

Check the presence of necessary columns in a dataset

Usage

check_columns(data, columns)

Arguments

data dataset to check

columns a vector of column names that must be present

Value

nothing, but throws an error if a column is missing

4 check_time

check_talkr Check the presence of talkr-workflow columns in the dataset.

Description

Uses check_columns() to check for: - begin - end - participant - utterance - source - uid

Usage

check_talkr(data)

Arguments

data dataset to check

Details

Verifies that begin and end columns are numeric, and likely indicate milliseconds.

check_time Verify that timing columns are numeric and likely indicate millisec-
onds.

Description

Verify that timing columns are numeric and likely indicate milliseconds.

Usage

check_time(column, name)

Arguments

column vector with timing information

name name of the column

Value

nothing, but throws an error if the column is not numeric and warns if the column may not indicate
milliseconds

GeomToken 5

GeomToken GeomToken

Description

GeomToken

GeomTurn

geom_token Plot individual tokens

Description

From a separate data frame containing tokenized data, plot individual tokens at their estimated
time. Data must be provided separately, and should contain a column with the participant (y) and a
column with the time (x).

Usage

geom_token(
data,
mapping = NULL,
stat = "identity",
position = "identity",
...,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

data A tokenized data frame (see ‘tokenize()‘).

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.
• A string naming the stat. To give the stat as a string, strip the function name

of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

6 geom_token

• For more information and other ways to specify the stat, see the layer stat
documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Value

A ggplot2 layer corresponding to a token

geom_turn 7

geom_turn Show turn-taking in visualized conversations

Description

Show turn-taking in visualized conversations

Usage

geom_turn(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
na.rm = FALSE,
height = 0.5,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by ‘ggplot2::aes()‘. Requires specification of
‘begin‘ and ‘end‘ of turns. Inherits from the default mapping at the top level of
the plot, if ‘inherit.aes‘ is set to ‘TRUE‘ (the default).

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.
• A string naming the stat. To give the stat as a string, strip the function name

of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

• For more information and other ways to specify the stat, see the layer stat
documentation.

8 geom_turn

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

height The height of the turn-taking rectangles

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Value

A ggplot2 layer corresponding to a turn-taking rectangle

get_ifadv 9

get_ifadv Get IFADV data

Description

IFA Dialog Video corpus data Available in the public repository: https://github.com/elpaco-escience/ifadv

Usage

get_ifadv(
source = "https://raw.githubusercontent.com/elpaco-escience/ifadv/csv/data/ifadv.csv"

)

Arguments

source (default = "https://raw.githubusercontent.com/elpaco-escience/ifadv/csv/data/ifadv.csv")

Details

This function requires an internet connection.

Value

A data frame containing the IFADV dataset

init Initialize a ‘talkr‘ dataset

Description

From a dataframe object, generate a talkr dataset. This dataset contains columns that are used
throughout the talkr infrastructure to visualize conversations and language corpora. Initializing a
talkr dataset is the first step in the talkr workflow.

Usage

init(
data,
source = "source",
begin = "begin",
end = "end",
participant = "participant",
utterance = "utterance",
format_timestamps = "ms"

)

10 plot_density

Arguments

data A dataframe object
source The column name identifying the conversation source (e.g. a filename; is used

as unique conversation ID). If there are no different sources in the data, set this
parameter to ‘NULL‘.

begin The column name with the begin time of the utterance (in milliseconds)
end The column name with the end time of the utterance (in milliseconds)
participant The column name with the participant who produced the utterance
utterance The column name with the utterance itself
format_timestamps

The format of the timestamps in the begin and end columns. Default is "ms",
which expects milliseconds. ‘%H:%M:%OS‘ will format eg. 00:00:00.010 to
milliseconds (10). See ‘?strptime‘ for more format examples.

Value

A dataframe object with columns needed for the talkr workflow

plot_density Make a density plot of a specific column

Description

Make a density plot of a specific column

Usage

plot_density(
data,
colname,
title = "Density",
xlab = "value",
ylab = "density"

)

Arguments

data data frame containing the column
colname column name for which the density should be plotted
title plot title
xlab x-axis label
ylab y-axis label

Value

recorded plot

plot_quality 11

plot_quality Check source quality by plotting timing data

Description

Check source quality by plotting timing data

Usage

plot_quality(data, source = "all", saveplot = FALSE)

Arguments

data talkr data frame
source source to be checked (default is "all", no source is selected)
saveplot save plot to file (default is FALSE)

Value

list of recorded plots

plot_scatter Make a scatter plot of two columns

Description

Make a scatter plot of two columns

Usage

plot_scatter(
data,
colname_x,
colname_y,
title = "Scatter",
xlab = "x",
ylab = "y"

)

Arguments

data data frame containing the columns
colname_x name of column plotted on x-axis
colname_y name of column plotted on y-axis
title plot title
xlab x-axis label
ylab y-axis label

12 theme_turnPlot

Value

recorded plot

report_stats Report corpus-level and conversation-level statistics

Description

Basic conversation statistics are reported to the console: - Corpus-level statistics, reporting on the
dataset as a whole; - Conversation-level statistics, reporting per source.

Usage

report_stats(data)

Arguments

data talkr dataset

Details

The input for this function must be a ‘talkr‘ dataset, containing the columns ‘source‘, ‘participant‘,
‘begin‘, and ‘end‘. Time stamps in the columns ‘begin‘ and ‘end‘ must be in milliseconds. To easily
transform a dataset to a ‘talkr‘ dataset, consult ‘talkr::init()‘.

Value

No return, just prints a summary to the console

theme_turnPlot T heme for the turn plot

Description

T heme for the turn plot

Usage

theme_turnPlot(base_size = 11, base_family = "serif", ticks = TRUE)

Arguments

base_size int

base_family chr

ticks bool

tokenize 13

Value

ggplot2 custom theme for turn plots

tokenize Generate a token-specific dataframe

Description

From a dataframe with utterances, generate a dataframe that separates tokens in utterances, and
assesses their relative timing. The returned data contains information about the original utterance
(‘uid‘), as well as the number of tokens in the utterance (‘nwords‘), and the relative time of the
token in the utterance (‘relative_time‘).

Usage

tokenize(data, utterancecol = "utterance")

Arguments

data a talkr dataset

utterancecol the name of the column containing the clean utterance (defaults to "utterance")

Details

The relative time is calculated with each token in an utterance having an equal duration (the duration
of the utterance divided by the number of words), and the first token in the utterance beginning at
the beginning of the utterance.

The input column provided with the argument ‘utterancecol‘ is used to generate the tokens. It is
advised to provide a version of the utterance that has been cleaned and stripped of special characters.
Cleaning is not performed in this function. Spaces are used to separate tokens.

Value

a dataframe with details about each token in the utterance

Index

∗ datasets
GeomToken, 5

add_lines, 2
aes(), 5

borders(), 6, 8

calculate_timing, 3
check_columns, 3
check_talkr, 4
check_time, 4

fortify(), 7

geom_token, 5
geom_turn, 7
GeomToken, 5
GeomTurn (GeomToken), 5
get_ifadv, 9
ggplot(), 7

init, 9

key glyphs, 6, 8

layer position, 6, 8
layer stat, 6, 7
layer(), 6, 8

plot_density, 10
plot_quality, 11
plot_scatter, 11

report_stats, 12

theme_turnPlot, 12
tokenize, 13

14

	add_lines
	calculate_timing
	check_columns
	check_talkr
	check_time
	GeomToken
	geom_token
	geom_turn
	get_ifadv
	init
	plot_density
	plot_quality
	plot_scatter
	report_stats
	theme_turnPlot
	tokenize
	Index

