Processing math: 29%

oes() - occurrence part of iETS model

Ivan Svetunkov

2024-10-01

smooth package has a mechanism of treating the data with zero values. This might be useful for cases of intermittent demand (the demand that happens at random). All the univariate functions in the package have a parameter occurrence that allows handling this type of data. The canonical model, used in smooth, is called “iETS” - intermittent exponential smoothing model. This vignette explains how the iETS model and its occurrence part are implemented in the smooth package.

The basics

The canonical general iETS model (called iETSG) can be summarised as: yt=otztotBernoulli(pt)pt=f(μa,t,μb,t)at=wa(va,tL)+ra(va,tL)ϵa,tva,t=fa(va,tL)+ga(va,tL)ϵa,tbt=wa(vb,tL)+ra(vb,tL)ϵb,tvb,t=fa(vb,tL)+ga(vb,tL)ϵb,t, where yt is the observed values, zt is the demand size, which is a pure multiplicative ETS model on its own, w() is the measurement function, r() is the error function, f() is the transition function and g() is the persistence function (the subscripts allow separating the functions for different parts of the model). These four functions define how the elements of the vector vt interact with each other. Furthermore, ϵa,t and ϵb,t are the mutually independent error terms that follow unknown distribution, ot is the binary occurrence variable (1 - demand is non-zero, 0 - no demand in the period t) which is distributed according to Bernoulli with probability pt. μa,t and μb,t are the conditional expectations for the unobservable variables at and bt. Any ETS model can be used for at and bt, and the transformation of them into the probability pt depends on the type of the error. The general formula for the multiplicative error is: pt=μa,tμa,t+μb,t, while for the additive error it is: pt=exp(μa,t)exp(μa,t)+exp(μb,t). This is because both μa,t and μb,t need to be positive, and the additive error models support the real plane. The canonical iETS model assumes that the pure multiplicative model is used for the both at and bt. This type of model is positively defined for any values of error, trend and seasonality, which is essential for the values of at and bt and their expectations. If a combination of additive and multiplicative error models is used, then the additive part is exponentiated prior to the usage of the formulae for the calculation of the probability.

An example of an iETS model is the basic local-level model iETS(M,N,N)G(M,N,N)(M,N,N): yt=otztzt=lz,t1(1+ϵz,t)lz,t=lz,t1(1+αzϵz,t)(1+ϵt)logN(0,σ2ϵ)otBernoulli(pt)pt=μa,tμa,t+μb,tat=la,t1(1+ϵa,t)la,t=la,t1(1+αaϵa,t)μa,t=la,t1bt=lb,t1(1+ϵb,t)lb,t=lb,t1(1+αbϵb,t)μb,t=lb,t1, where la,t and lb,t are the levels for each of the shape parameters and αa and αb are the smoothing parameters and the error terms 1+ϵa,t and 1+ϵb,t are positive and have means of one. We do not make any other distributional assumptions concerning the error terms. More advanced models can be constructing by specifying the ETS models for each part and / or adding explanatory variables.

In the notation of the model iETS(M,N,N)G(M,N,N)(M,N,N), the first brackets describe the ETS model for the demand sizes, the underscore letter points out at the specific subtype of model (see below), the second brackets describe the ETS model, underlying the variable at and the last ones stand for the model for the bt. If only one variable is needed (either at or bt), then the redundant brackets are dropped, so that the notation simplifies, for example, to: iETS(M,N,N)O(M,N,N). If the same type of model is used for both demand sizes and demand occurrence, then the second brackets can be dropped as well, simplifying the view to: iETS(M,N,N)G. Furthermore, the notation without any brackets, such as iETSG stands for a general class of a specific subtype of iETS model (so any error / trend / seasonality). Also, given that iETSG is the most general model of all iETS models, the “G” can be dropped, when the properties are applicable to all subtypes. Finally, the “oETS” notation is used when the occurrence part of the model is discussed explicitly, skipping the demand sizes.

The concentrated likelihood function for the iETS model is: \begin{equation} \label{eq:LogNormalConcentratedLogLikelihood} \tag{2} \ell(\boldsymbol{\theta}, \hat{\sigma}_\epsilon^2 | \textbf{Y}) = - \frac{1}{2} \left( T \log(2 \pi e \hat{\sigma}_\epsilon^2) + T_0 \right) - {\sum_{o_t=1}} \log(z_t) + {\sum_{o_t=1}} \log(\hat{p}_t) + {\sum_{o_t=0}} \log(1-\hat{p}_t) , \end{equation} where \textbf{Y} is the vector of all the in-sample observations, \boldsymbol{\theta} is the vector of parameters to estimate (initial values and smoothing parameters), T is the number of all observations, T_0 is the number of zero observations, \hat{\sigma_\epsilon}^2 = \frac{1}{T} \sum_{o_t=1} \log^2 \left(1 + \epsilon_t \right) is the scale parameter of the one-step-ahead forecast error for the demand sizes and \hat{p}_t is the estimated probability of a non-zero demand at time t. This likelihood is used for the estimation of all the special cases of the iETS_G model.

Depending on the restrictions on a_t and b_t, there can be several iETS models:

  1. iETS_F: \mu_{a,t} = \text{const}, \mu_{b,t} = \text{const} - the model with the fixed probability of occurrence;
  2. iETS_O: \mu_{b,t} = 1 - the “odds ratio” model, based on the logistic transform of the o_t variable;
  3. iETS_I: \mu_{a,t} = 1 - the “inverse odds ratio” model, based on the inverse logistic transform of the o_t variable;
  4. iETS_D: \mu_{a,t} + \mu_{b,t} = 1, \mu_{a,t} \leq 1 - the direct probability model, where the p_t is calculated directly from the occurrence variable o_t;
  5. iETS_G: No restrictions - the model based on the evolution of both \mu_{a,t} and \mu_{b,t}.

Depending on the type of the model, there are different mechanisms of the model construction, error calculation, update of the states and the generation of forecasts.

In this vignette we will use ETS(M,N,N) model as a base for the different parts of the models. Although, this is a simplification, it allows better understanding the basics of the different types of iETS model, without the loss of generality.

We will use an artificial data in order to see how the functions work:

y <- ts(c(rpois(20,0.25),rpois(20,0.5),rpois(20,1),rpois(20,2),rpois(20,3),rpois(20,5)))

All the models, discussed in this vignette, are implemented in the functions oes() and oesg(). The only missing element in all of this at the moment is the model selection mechanism for the demand occurrence part. So neither oes() nor oesg() currently support “ZZZ” ETS models.

iETS_F

In case of the fixed a_t and b_t, the iETS_G model reduces to: \begin{equation} \label{eq:ISSETS(MNN)Fixed} \tag{3} \begin{matrix} y_t = o_t z_t \\ o_t \sim \text{Bernoulli}(p) \end{matrix} . \end{equation}

The conditional h-steps ahead mean of the demand occurrence probability is calculated as: \begin{equation} \label{eq:pt_fixed_expectation} \hat{o}_{t+h|t} = \hat{p} . \end{equation}

The estimate of the probability p is calculated based on the maximisation of the following concentrated log-likelihood function: \begin{equation} \label{eq:ISSETS(MNN)FixedLikelihoodSmooth} \ell \left({p} | o_t \right) = T_1 \log {p} + T_0 \log (1-{p}) , \end{equation} where T_0 is the number of zero observations and T_1 is the number of non-zero observations in the data. The number of estimated parameters in this case is equal to k_z+1, where k_z is the number of parameters for the demand sizes part, and 1 is for the estimation of the probability p. Maximising this likelihood deems the analytical solution for the p: \begin{equation} \label{eq:ISSETS(MNN)FixedLikelihoodSmoothProbability} \hat{p} = \frac{T_1}{T}, \end{equation} where T_1 is the number of non-zero observations and T is the number of all the available observations.

The occurrence part of the model oETS_F is constructed using oes() function:

oETSFModel1 <- oes(y, occurrence="fixed", h=10, holdout=TRUE)
oETSFModel1
## Occurrence state space model estimated: Fixed probability
## Underlying ETS model: oETS[F](MNN)
## Vector of initials:
##  level 
## 0.6909 
## 
## Error standard deviation: 1.0839
## Sample size: 110
## Number of estimated parameters: 1
## Number of degrees of freedom: 109
## Information criteria: 
##      AIC     AICc      BIC     BICc 
## 138.0417 138.0787 140.7422 140.8292
plot(oETSFModel1)

The occurrence part of the model is supported by adam() function. For example, here’s how the iETS(M,M,N)_F can be constructed:

adam(y, "MMN", occurrence="fixed", h=10, holdout=TRUE, silent=FALSE)
## Time elapsed: 0.03 seconds
## Model estimated using adam() function: iETS(MMN)[F]
## With optimal initialisation
## Occurrence model type: Fixed probability
## Distribution assumed in the model: Mixture of Bernoulli and Gamma
## Loss function type: likelihood; Loss function value: 125.383
## Persistence vector g:
##  alpha   beta 
## 0.0050 0.0044 
## 
## Sample size: 110
## Number of estimated parameters: 6
## Number of degrees of freedom: 104
## Information criteria:
##      AIC     AICc      BIC     BICc 
## 398.8077 399.3847 415.0106 411.6661 
## 
## Forecast errors:
## Asymmetry: -1.61%; sMSE: 76.252%; rRMSE: 0.908; sPIS: -402.055%; sCE: 124.103%

iETS_O

The odds-ratio iETS uses only one model for the occurrence part, for the \mu_{a,t} variable (setting \mu_{b,t}=1), which simplifies the iETS_G model. For example, for the iETS_O(M,N,N): \begin{equation} \label{eq:iETSO} \tag{5} \begin{matrix} y_t = o_t z_t \\ o_t \sim \text{Bernoulli} \left(p_t \right) \\ p_t = \frac{\mu_{a,t}}{\mu_{a,t}+1} \\ a_t = l_{a,t-1} \left(1 + \epsilon_{a,t} \right) \\ l_{a,t} = l_{a,t-1}( 1 + \alpha_{a} \epsilon_{a,t}) \\ \mu_{a,t} = l_{a,t-1} \end{matrix}. \end{equation}

In the estimation of the model, the initial level is set to the transformed mean probability of occurrence l_{a,0}=\frac{\bar{p}}{1-\bar{p}} for multiplicative error model and l_{a,0} = \log l_{a,0} for the additive one, where \bar{p}=\frac{1}{T} \sum_{t=1}^T o_t, the initial trend is equal to 0 in case of the additive and 1 in case of the multiplicative types. In cases of seasonal models, the regression with dummy variables is fitted, and its parameters are then used for the initials of the seasonal indices after the transformations similar to the level ones.

The construction of the model is done via the following set of equations (example with oETS_O(M,N,N)): \begin{equation} \label{eq:iETSOEstimation} \begin{matrix} \hat{p}_t = \frac{\hat{a}_t}{\hat{a}_t+1} \\ \hat{a}_t = l_{a,t-1} \\ l_{a,t} = l_{a,t-1}( 1 + \alpha_{a} e_{a,t}) \\ 1+e_{a,t} = \frac{u_t}{1-u_t} \\ u_{t} = \frac{1 + o_t - \hat{p}_t}{2} \end{matrix}, \end{equation} where \hat{a}_t is the estimate of \mu_{a,t}.

Given that the model is estimated using the likelihood (2), it has k_z+k_a parameters to estimate, where k_z includes all the initial values, the smoothing parameters and the scale of the error of the demand sizes part of the model, and k_a includes only initial values and the smoothing parameters of the model for the demand occurrence. In case of iETS_O(M,N,N) this number is equal to 5.

The occurrence part of the model iETS_O is constructed using the very same oes() function, but also allows specifying the ETS model to use. For example, here’s the ETS(M,M,N) model:

oETSOModel <- oes(y, model="MMN", occurrence="o", h=10, holdout=TRUE)
oETSOModel
## Occurrence state space model estimated: Odds ratio
## Underlying ETS model: oETS[O](MMN)
## Smoothing parameters:
##  level  trend 
## 0.0813 0.0813 
## Vector of initials:
##  level  trend 
## 1.5460 1.5187 
## 
## Error standard deviation: 0.9339
## Sample size: 110
## Number of estimated parameters: 4
## Number of degrees of freedom: 106
## Information criteria: 
##      AIC     AICc      BIC     BICc 
## 169.1340 169.5149 179.9359 180.8312
plot(oETSOModel)

And here’s the full iETS(M,M,N)_O model:

adam(y, "MMN", occurrence="o", oesmodel="MMN", h=10, holdout=TRUE, silent=FALSE)
## Time elapsed: 0.07 seconds
## Model estimated using adam() function: iETS(MMN)[O]
## With optimal initialisation
## Occurrence model type: Odds ratio
## Distribution assumed in the model: Mixture of Bernoulli and Gamma
## Loss function type: likelihood; Loss function value: 125.383
## Persistence vector g:
##  alpha   beta 
## 0.0050 0.0044 
## 
## Sample size: 110
## Number of estimated parameters: 9
## Number of degrees of freedom: 101
## Information criteria:
##      AIC     AICc      BIC     BICc 
## 429.9000 430.4770 454.2044 436.7583 
## 
## Forecast errors:
## Asymmetry: -77.968%; sMSE: 125.745%; rRMSE: 1.166; sPIS: 4028.176%; sCE: -719.335%

This should give the same results as before, meaning that we ask explicitly for the adam() function to use the earlier estimated model:

adam(y, "MMN", occurrence=oETSOModel, h=10, holdout=TRUE, silent=FALSE)

This gives an additional flexibility, because the construction can be done in two steps, with a more refined model for the occurrence part (e.g. including explanatory variables).

iETS_I

Similarly to the odds-ratio iETS, inverse-odds-ratio model uses only one model for the occurrence part, but for the \mu_{b,t} variable instead of \mu_{a,t} (now \mu_{a,t}=1). Here is an example of iETS_I(M,N,N): \begin{equation} \label{eq:iETSI} \tag{6} \begin{matrix} y_t = o_t z_t \\ o_t \sim \text{Bernoulli} \left(p_t \right) \\ p_t = \frac{1}{1+\mu_{b,t}} \\ b_t = l_{b,t-1} \left(1 + \epsilon_{b,t} \right) \\ l_{b,t} = l_{b,t-1}( 1 + \alpha_{b} \epsilon_{b,t}) \\ \mu_{b,t} = l_{b,t-1} \end{matrix}. \end{equation}

This model resembles the logistic regression, where the probability is obtained from an underlying regression model of x_t'A. In the estimation of the model, the initial level is set to the transformed mean probability of occurrence l_{b,0}=\frac{1-\bar{p}}{\bar{p}} for multiplicative error model and l_{b,0} = \log l_{b,0} for the additive one, where \bar{p}=\frac{1}{T} \sum_{t=1}^T o_t, the initial trend is equal to 0 in case of the additive and 1 in case of the multiplicative types. The seasonality is treated similar to the iETS_O model, but using the inverse-odds transformation.

The construction of the model is done via the set of equations similar to the ones for the iETS_O model: \begin{equation} \label{eq:iETSIEstimation} \begin{matrix} \hat{p}_t = \frac{1}{1+\hat{b}_t} \\ \hat{b}_t = l_{b,t-1} \\ l_{b,t} = l_{b,t-1}( 1 + \alpha_{b} e_{b,t}) \\ 1+e_{b,t} = \frac{1-u_t}{u_t} \\ u_{t} = \frac{1 + o_t - \hat{p}_t}{2} \end{matrix}, \end{equation} where \hat{b}_t is the estimate of \mu_{b,t}.

So the model iETS_I is like a mirror reflection of the model iETS_O. However, it produces different forecasts, because it focuses on the probability of non-occurrence, rather than the probability of occurrence. Interestingly enough, the probability of occurrence p_t can also be estimated if 1+b_t in the denominator is set to be equal to the demand intervals (between the demand occurrences). The model (6) underlies Croston’s method in this case.

Once again oes() function is used in the construction of the model:

oETSIModel <- oes(y, model="MMN", occurrence="i", h=10, holdout=TRUE)
oETSIModel
## Occurrence state space model estimated: Inverse odds ratio
## Underlying ETS model: oETS[I](MMN)
## Smoothing parameters:
## level trend 
##     0     0 
## Vector of initials:
##  level  trend 
## 2.9643 0.9618 
## 
## Error standard deviation: 3.8118
## Sample size: 110
## Number of estimated parameters: 4
## Number of degrees of freedom: 106
## Information criteria: 
##      AIC     AICc      BIC     BICc 
## 117.5375 117.9185 128.3394 129.2348
plot(oETSIModel)

And here’s the full iETS(M,M,N)_O model:

adam(y, "MMN", occurrence="i", oesmodel="MMN", h=10, holdout=TRUE, silent=FALSE)
## Time elapsed: 0.07 seconds
## Model estimated using adam() function: iETS(MMN)
## With optimal initialisation
## Occurrence model type: Inverse odds ratio
## Distribution assumed in the model: Mixture of Bernoulli and Gamma
## Loss function type: likelihood; Loss function value: 125.383
## Persistence vector g:
##  alpha   beta 
## 0.0050 0.0044 
## 
## Sample size: 110
## Number of estimated parameters: 9
## Number of degrees of freedom: 101
## Information criteria:
##      AIC     AICc      BIC     BICc 
## 378.3036 378.8805 402.6079 385.1619 
## 
## Forecast errors:
## Asymmetry: -74.163%; sMSE: 114.5%; rRMSE: 1.113; sPIS: 3570.128%; sCE: -636.005%

Once again, an earlier estimated model can be used in the univariate forecasting functions:

adam(y, "MMN", occurrence=oETSIModel, h=10, holdout=TRUE, silent=FALSE)

iETS_D

This model appears, when a specific restriction is imposed: \begin{equation} \label{eq:iETSGRestriction} \mu_{a,t} + \mu_{b,t} = 1, \mu_{a,t} \in [0, 1] \end{equation} The pure multiplicative iETS_G(M,N,N) model is then transformed into iETS_D(M,N,N): \begin{equation} \label{eq:iETSD} \tag{7} \begin{matrix} y_t = o_t z_t \\ o_t \sim \text{Bernoulli} \left(a_t \right) \\ a_t = l_{a,t-1} \left(1 + \epsilon_{a,t} \right) \\ l_{a,t} = l_{a,t-1}( 1 + \alpha_{a} \epsilon_{a,t}) \\ \mu_{a,t} = \min(l_{a,t-1}, 1) \end{matrix}. \end{equation} An option with the additive model in this case has a different, more complicated form: \begin{equation} \label{eq:iETSDAdditive} \begin{matrix} y_t = o_t z_t \\ o_t \sim \text{Bernoulli} \left(a_t \right) \\ a_t = l_{a,t-1} + \epsilon_{a,t} \\ l_{a,t} = l_{a,t-1} + \alpha_{a} \epsilon_{a,t} \\ \mu_{a,t} = \max \left( \min(l_{a,t-1}, 1), 0 \right) \end{matrix}. \end{equation}

The estimation of the multiplicative error model is done using the following set of equations: \begin{equation} \label{eq:ISSETS(MNN)_probability_estimate} \begin{matrix} \hat{y}_t = o_t \hat{l}_{z,t-1} \\ \hat{l}_{z,t} = \hat{l}_{z,t-1}( 1 + \alpha e_t) \\ \hat{a}_t = min(\hat{l}_{a,t-1}, 1) \\ \hat{l}_{a,t} = \hat{l}_{a,t-1}( 1 + \alpha_{a} e_{a,t}) \end{matrix}, \end{equation} where \begin{equation} \label{eq:ISSETS(MNN)_TSB_model_error_approximation} e_{a,t} = \frac{o_t (1 - 2 \kappa) + \kappa - \hat{a}_t}{\hat{a}_t}, \end{equation} and \kappa is a very small number (for example, \kappa = 10^{-10}), needed only in order to make the model estimable. The estimate of the error term in case of the additive model is much simpler and does not need any specific tricks to work: \begin{equation} \label{eq:ISSETS(MNN)_TSB_model_error_approximation2} e_{a,t} = o_t - \hat{a}_t . \end{equation}

The initials of the iETS_D model are calculated directly from the data without any additional transformations

Here’s an example of the application of the model to the same artificial data:

oETSDModel <- oes(y, model="MMN", occurrence="d", h=10, holdout=TRUE)
oETSDModel
## Occurrence state space model estimated: Direct probability
## Underlying ETS model: oETS[D](MMN)
## Smoothing parameters:
##  level  trend 
## 0.1365 0.0483 
## Vector of initials:
##  level  trend 
## 0.4016 1.0637 
## 
## Error standard deviation: 1.0135
## Sample size: 110
## Number of estimated parameters: 4
## Number of degrees of freedom: 106
## Information criteria: 
##      AIC     AICc      BIC     BICc 
## 412.7527 413.1336 423.5546 424.4499
plot(oETSDModel)

The usage of the model in case of univariate forecasting functions is the same as in the cases of other occurrence models, discussed above:

adam(y, "MMN", occurrence=oETSDModel, h=10, holdout=TRUE, silent=FALSE)
## Time elapsed: 0.03 seconds
## Model estimated using adam() function: iETS(MMN)[D]
## With optimal initialisation
## Occurrence model type: Direct
## Distribution assumed in the model: Mixture of Bernoulli and Gamma
## Loss function type: likelihood; Loss function value: 125.383
## Persistence vector g:
##  alpha   beta 
## 0.0050 0.0044 
## 
## Sample size: 110
## Number of estimated parameters: 5
## Number of degrees of freedom: 105
## Information criteria:
##      AIC     AICc      BIC     BICc 
## 665.5187 666.0957 679.0211 680.3770 
## 
## Forecast errors:
## Asymmetry: -78.153%; sMSE: 126.407%; rRMSE: 1.169; sPIS: 4057.662%; sCE: -723.502%

iETS_G

This model has already been discussed above and was presented in (1). The estimation of iETS(M,N,N)_G model is done via the following set of equations: \begin{equation} \label{eq:ISSETS(MNN)Estimated} \begin{matrix} \hat{y}_t = o_t \hat{z}_t \\ e_t = o_t \frac{y_t - \hat{z}_t}{\hat{z}_t} \\ \hat{z}_t = \hat{l}_{z,t-1} \\ \hat{l}_{z,t} = \hat{l}_{z,t-1}( 1 + \alpha_z e_t) \\ e_{a,t} = \frac{u_t}{1-u_t} -1 \\ \hat{a}_t = \hat{l}_{a,t-1} \\ \hat{l}_{a,t} = \hat{l}_{a,t-1}( 1 + \alpha_{a} e_{a,t}) \\ e_{b,t} = \frac{1-u_t}{u_t} -1 \\ \hat{b}_t = \hat{l}_{b,t-1} \\ \hat{l}_{b,t} = \hat{l}_{b,t-1}( 1 + \alpha_{b} e_{b,t}) \end{matrix} . \end{equation} The initialisation of the parameters of the iETS_G model is done separately for the variables a_t and b_t, based on the principles, described above for the iETS_O and iETS_I.

There is a separate function for this model, called oesg(). It has twice more parameters than oes(), because it allows fine tuning of the models for the variables a_t and b_t. This gives an additional flexibility. For example, here is how we can use ETS(M,N,N) for the a_t and ETS(A,A,N) for the b_t, resulting in oETS_G(M,N,N)(A,A,N):

oETSGModel1 <- oesg(y, modelA="MNN", modelB="AAN", h=10, holdout=TRUE)
oETSGModel1
## Occurrence state space model estimated: General
## Underlying ETS model: oETS[G](MNN)(AAN)
## 
## Sample size: 110
## Number of estimated parameters: 6
## Number of degrees of freedom: 104
## Information criteria: 
##      AIC     AICc      BIC     BICc 
## 121.9114 122.7270 138.1143 140.0310
plot(oETSGModel1)

The oes() function accepts occurrence="g" and in this case calls for oesg() with the same types of ETS models for both parts:

oETSGModel2 <- oes(y, model="MNN", occurrence="g", h=10, holdout=TRUE)
oETSGModel2
## Occurrence state space model estimated: General
## Underlying ETS model: oETS[G](MNN)(MNN)
## 
## Sample size: 110
## Number of estimated parameters: 4
## Number of degrees of freedom: 106
## Information criteria: 
##      AIC     AICc      BIC     BICc 
## 122.2389 122.6199 133.0409 133.9362
plot(oETSGModel2)

Finally, the more flexible way to construct iETS model would be to do it in two steps: either using oesg() or oes() and then using the es() with the provided model in occurrence variable. But a simpler option is available as well:

es(y, "MMN", occurrence="g", oesmodel="MMN", h=10, holdout=TRUE, silent=FALSE)
## Time elapsed: 0.12 seconds
## Model estimated using es() function: iETS(MMN)[G]
## With optimal initialisation
## Occurrence model type: General
## Distribution assumed in the model: Mixture of Bernoulli and Normal
## Loss function type: likelihood; Loss function value: 123.962
## Persistence vector g:
## alpha  beta 
## 7e-04 6e-04 
## 
## Sample size: 110
## Number of estimated parameters: 13
## Number of degrees of freedom: 97
## Information criteria:
##      AIC     AICc      BIC     BICc 
## 414.6892 415.2661 449.7954 413.5475 
## 
## Forecast errors:
## Asymmetry: -37.555%; sMSE: 80.115%; rRMSE: 0.931; sPIS: 1646.617%; sCE: -260.088%

iETS_A

Finally, there is an occurrence type selection mechanism. It tries out all the iETS subtypes of models, discussed above and selects the one that has the lowest information criterion (i.e. AIC). This subtype is called iETS_A (automatic), although it does not represent any specific model. Here’s an example:

oETSAModel <- oes(y, model="MNN", occurrence="a", h=10, holdout=TRUE)
oETSAModel
## Occurrence state space model estimated: Odds ratio
## Underlying ETS model: oETS[O](MNN)
## Smoothing parameters:
## level 
## 0.084 
## Vector of initials:
##  level 
## 0.3317 
## 
## Error standard deviation: 1.208
## Sample size: 110
## Number of estimated parameters: 2
## Number of degrees of freedom: 108
## Information criteria: 
##      AIC     AICc      BIC     BICc 
## 118.2389 118.3511 123.6399 123.9035
plot(oETSAModel)

The main restriction of the iETS models at the moment (smooth v.2.5.0) is that there is no model selection between the ETS models for the occurrence part. This needs to be done manually. Hopefully, this feature will appear in the next release of the package.

References