The ncdfCF
package provides an easy to use interface to
netCDF resources in R, either in local files or remotely on a THREDDS
server. It is built on the RNetCDF
package which, like
package ncdf4
, provides a basic interface to the
netcdf
library, but which lacks an intuitive user
interface. Package ncdfCF
provides a high-level interface
using functions and methods that are familiar to the R user. It reads
the structural metadata and also the attributes upon opening the
resource. In the process, the ncdfCF
package also applies
CF Metadata Conventions to interpret the data. This currently applies
to:
CFtime
package these offsets
can be turned into intelligible dates and times, for all 9 defined
calendars.dimnames
for the axis. (Note that this also applies to
generic numeric axes with labels defined.)formula_terms
attribute.Opening and inspecting the contents of a netCDF resource is very straightforward:
library(ncdfCF)
# Get any netCDF file
<- system.file("extdata", "ERA5land_Rwanda_20160101.nc", package = "ncdfCF")
fn
# Open the file, all metadata is read
<- open_ncdf(fn))
(ds #> <Dataset> ERA5land_Rwanda_20160101
#> Resource : /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/library/ncdfCF/extdata/ERA5land_Rwanda_20160101.nc
#> Format : offset64
#> Type : generic netCDF data
#> Conventions: CF-1.6
#> Keep open : FALSE
#>
#> Variables:
#> name long_name units data_type axes
#> t2m 2 metre temperature K NC_SHORT longitude, latitude, time
#> pev Potential evaporation m NC_SHORT longitude, latitude, time
#> tp Total precipitation m NC_SHORT longitude, latitude, time
#>
#> Axes:
#> id axis name length unlim values
#> 0 T time 24 U [2016-01-01 00:00:00 ... 2016-01-01 23:00:00]
#> 1 X longitude 31 [28 ... 31]
#> 2 Y latitude 21 [-1 ... -3]
#> unit
#> hours since 1900-01-01 00:00:00.0
#> degrees_east
#> degrees_north
#>
#> Attributes:
#> id name type length
#> 0 CDI NC_CHAR 64
#> 1 Conventions NC_CHAR 6
#> 2 history NC_CHAR 482
#> 3 CDO NC_CHAR 64
#> value
#> Climate Data Interface version 2.4.1 (https://m...
#> CF-1.6
#> Tue May 28 18:39:12 2024: cdo seldate,2016-01-0...
#> Climate Data Operators version 2.4.1 (https://m...
# ...or very brief details
names(ds)
#> [1] "t2m" "pev" "tp"
dimnames(ds)
#> [1] "time" "longitude" "latitude"
# Variables and dimensions can be accessed through standard list-type extraction syntax
<- ds[["t2m"]])
(t2m #> <Variable> t2m
#> Long name: 2 metre temperature
#>
#> Axes:
#> id axis name length unlim values
#> 1 X longitude 31 [28 ... 31]
#> 2 Y latitude 21 [-1 ... -3]
#> 0 T time 24 U [2016-01-01 00:00:00 ... 2016-01-01 23:00:00]
#> unit
#> degrees_east
#> degrees_north
#> hours since 1900-01-01 00:00:00.0
#>
#> Attributes:
#> id name type length value
#> 0 long_name NC_CHAR 19 2 metre temperature
#> 1 units NC_CHAR 1 K
#> 2 add_offset NC_DOUBLE 1 292.664569285614
#> 3 scale_factor NC_DOUBLE 1 0.00045127252204996
#> 4 _FillValue NC_SHORT 1 -32767
#> 5 missing_value NC_SHORT 1 -32767
"longitude"]]
ds[[#> <Longitude axis> [1] longitude
#> Length : 31
#> Axis : X
#> Values : 28, 28.1, 28.2 ... 30.8, 30.9, 31 degrees_east
#> Bounds : (not set)
#>
#> Attributes:
#> id name type length value
#> 0 standard_name NC_CHAR 9 longitude
#> 1 long_name NC_CHAR 9 longitude
#> 2 units NC_CHAR 12 degrees_east
#> 3 axis NC_CHAR 1 X
# Regular base R operations simplify life further
dimnames(ds[["pev"]]) # A variable: list of dimension names
#> [1] "longitude" "latitude" "time"
dimnames(ds[["longitude"]]) # A dimension: vector of dimension element values
#> [1] 28.0 28.1 28.2 28.3 28.4 28.5 28.6 28.7 28.8 28.9 29.0 29.1 29.2 29.3 29.4
#> [16] 29.5 29.6 29.7 29.8 29.9 30.0 30.1 30.2 30.3 30.4 30.5 30.6 30.7 30.8 30.9
#> [31] 31.0
# Access attributes
"pev"]]$attribute("long_name")
ds[[#> [1] "Potential evaporation"
If you just want to inspect what data is included in the netCDF
resource, use the peek_ncdf()
function:
<- peek_ncdf(fn))
(ds #> $uri
#> [1] "/Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/library/ncdfCF/extdata/ERA5land_Rwanda_20160101.nc"
#>
#> $type
#> [1] "generic netCDF data"
#>
#> $variables
#> id name long_name standard_name units axes
#> t2m 3 t2m 2 metre temperature NA K longitude, latitude, time
#> pev 4 pev Potential evaporation NA m longitude, latitude, time
#> tp 5 tp Total precipitation NA m longitude, latitude, time
#>
#> $axes
#> class id axis name long_name standard_name
#> time CFAxisTime 0 T time time time
#> longitude CFAxisLongitude 1 X longitude longitude longitude
#> latitude CFAxisLatitude 2 Y latitude latitude latitude
#> units length unlimited
#> time hours since 1900-01-01 00:00:00.0 24 TRUE
#> longitude degrees_east 31 FALSE
#> latitude degrees_north 21 FALSE
#> values has_bounds
#> time [2016-01-01 00:00:00 ... 2016-01-01 23:00:00] FALSE
#> longitude [28 ... 31] FALSE
#> latitude [-1 ... -3] FALSE
#>
#> $attributes
#> id name type length
#> 1 0 CDI NC_CHAR 64
#> 2 1 Conventions NC_CHAR 6
#> 3 2 history NC_CHAR 482
#> 4 3 CDO NC_CHAR 64
#> value
#> 1 Climate Data Interface version 2.4.1 (https://mpimet.mpg.de/cdi)
#> 2 CF-1.6
#> 3 Tue May 28 18:39:12 2024: cdo seldate,2016-01-01,2016-01-01 /Users/patrickvanlaake/CC/ERA5land/Rwanda/ERA5land_Rwanda_t2m-pev-tp_2016-2018.nc ERA5land_Rwanda_20160101.nc\n2021-12-22 07:00:24 GMT by grib_to_netcdf-2.23.0: /opt/ecmwf/mars-client/bin/grib_to_netcdf -S param -o /cache/data5/adaptor.mars.internal-1640155821.967082-25565-12-0b19757d-da4e-4ea4-b8aa-d08ec89caf2c.nc /cache/tmp/0b19757d-da4e-4ea4-b8aa-d08ec89caf2c-adaptor.mars.internal-1640142203.3196251-25565-10-tmp.grib
#> 4 Climate Data Operators version 2.4.1 (https://mpimet.mpg.de/cdo)
There are three ways to read data for a variable from the resource:
data():
The data()
method
returns all data of a variable, including its metadata, in a
CFData
instance.[]
: The usual R array operator gives
you access to the raw, non-interpreted data in the netCDF resource. This
uses index values into the dimensions and requires you to know the order
in which the dimensions are specified for the variable. With a bit of
tinkering and some helper functions in ncdfCF
this is still
very easy to do.subset()
: The subset()
method lets you specify what you want to extract from each dimension in
real-world coordinates and timestamps, in whichever order. This can also
rectify non-Cartesian grids to regular longitude-latitude grids.# Extract a timeseries for a specific location
<- t2m[5, 4, ]
ts str(ts)
#> num [1, 1, 1:24] 293 292 292 291 291 ...
#> - attr(*, "dimnames")=List of 3
#> ..$ : chr "28.4"
#> ..$ : chr "-1.3"
#> ..$ : chr [1:24] "2016-01-01 00:00:00" "2016-01-01 01:00:00" "2016-01-01 02:00:00" "2016-01-01 03:00:00" ...
#> - attr(*, "axis")= Named chr [1:3] "X" "Y" "T"
#> ..- attr(*, "names")= chr [1:3] "longitude" "latitude" "time"
#> - attr(*, "time")=List of 1
#> ..$ time:Classes 'CFTime', 'R6' 2016-01-01 00:00:00 2016-01-01 01:00:00 2016-01-01 02:00:00 2016-01-01 03:00:00 2016-01-01 04:00:00 2016-01-01 05:00:00 2016-01-01 06:00:00 2016-01-01 07:00:00 2016-01-01 08:00:00 2016-01-01 09:00:00 2016-01-01 10:00:00 2016-01-01 11:00:00 2016-01-01 12:00:00 2016-01-01 13:00:00 2016-01-01 14:00:00 2016-01-01 15:00:00 2016-01-01 16:00:00 2016-01-01 17:00:00 2016-01-01 18:00:00 2016-01-01 19:00:00 2016-01-01 20:00:00 2016-01-01 21:00:00 2016-01-01 22:00:00 2016-01-01 23:00:00
# Extract the full spatial extent for one time step
<- t2m[, , 12]
ts str(ts)
#> num [1:31, 1:21, 1] 300 300 300 300 300 ...
#> - attr(*, "dimnames")=List of 3
#> ..$ : chr [1:31] "28" "28.1" "28.2" "28.3" ...
#> ..$ : chr [1:21] "-1" "-1.1" "-1.2" "-1.3" ...
#> ..$ : chr "2016-01-01 11:00:00"
#> - attr(*, "axis")= Named chr [1:3] "X" "Y" "T"
#> ..- attr(*, "names")= chr [1:3] "longitude" "latitude" "time"
#> - attr(*, "time")=List of 1
#> ..$ time:Classes 'CFTime', 'R6' 2016-01-01 11:00:00
Note that the results contain degenerate dimensions (of length 1).
This by design when using basic []
data access because it
allows attributes to be attached in a consistent manner. When using the
subset()
method, the data is returned as an instance of
CFData
, including axes and attributes:
# Extract a specific region, full time dimension
<- t2m$subset(list(X = 29:30, Y = -1:-2)))
(ts #> <Data array> t2m
#> Long name: 2 metre temperature
#>
#> Values: [283.0182 ... 299.917] K
#> NA: 0 (0.0%)
#>
#> Axes:
#> id axis name length unlim values
#> -1 X longitude 10 [29 ... 29.9]
#> -1 Y latitude 10 [-1.1 ... -2]
#> 0 T time 24 U [2016-01-01 00:00:00 ... 2016-01-01 23:00:00]
#> unit
#>
#>
#> hours since 1900-01-01 00:00:00.0
#>
#> Attributes:
#> id name type length value
#> 0 long_name NC_CHAR 19 2 metre temperature
#> 1 units NC_CHAR 1 K
#> 2 add_offset NC_DOUBLE 1 292.664569285614
#> 3 scale_factor NC_DOUBLE 1 0.00045127252204996
#> 4 _FillValue NC_SHORT 1 -32767
#> 5 missing_value NC_SHORT 1 -32767
# Extract specific time slices for a specific region
# Note that the dimensions are specified out of order and using alternative
# specifications: only the extreme values are used.
<- t2m$subset(list(T = c("2016-01-01 09:00", "2016-01-01 15:00"),
(ts X = c(29.6, 28.8),
Y = seq(-2, -1, by = 0.05))))
#> <Data array> t2m
#> Long name: 2 metre temperature
#>
#> Values: [288.2335 ... 299.917] K
#> NA: 0 (0.0%)
#>
#> Axes:
#> id axis name length values
#> -1 X longitude 8 [28.8 ... 29.5]
#> -1 Y latitude 10 [-1.1 ... -2]
#> -1 T time 6 [2016-01-01 09:00:00 ... 2016-01-01 14:00:00]
#>
#> Attributes:
#> id name type length value
#> 0 long_name NC_CHAR 19 2 metre temperature
#> 1 units NC_CHAR 1 K
#> 2 add_offset NC_DOUBLE 1 292.664569285614
#> 3 scale_factor NC_DOUBLE 1 0.00045127252204996
#> 4 _FillValue NC_SHORT 1 -32767
#> 5 missing_value NC_SHORT 1 -32767
The latter two methods will read only as much data from the netCDF resource as is requested.
A CFData
object can be exported to a
data.table
or to a terra::SpatRaster
(3D) or
terra::SpatRasterDataset
(4D) for further processing.
Obviously, these packages need to be installed to utilise these
methods.
# install.packages("data.table")
library(data.table)
head(dt <- ts$data.table())
#> longitude latitude time t2m
#> <num> <num> <char> <num>
#> 1: 28.8 -1.1 2016-01-01 09:00:00 296.0753
#> 2: 28.9 -1.1 2016-01-01 09:00:00 294.9227
#> 3: 29.0 -1.1 2016-01-01 09:00:00 295.8135
#> 4: 29.1 -1.1 2016-01-01 09:00:00 297.0929
#> 5: 29.2 -1.1 2016-01-01 09:00:00 297.4697
#> 6: 29.3 -1.1 2016-01-01 09:00:00 298.5419
#install.packages("terra")
suppressMessages(library(terra))
<- ts$terra())
(r #> class : SpatRaster
#> dimensions : 10, 8, 6 (nrow, ncol, nlyr)
#> resolution : 0.1, 0.1 (x, y)
#> extent : 28.75, 29.55, -2.05, -1.05 (xmin, xmax, ymin, ymax)
#> coord. ref. : lon/lat WGS 84 (EPSG:4326)
#> source(s) : memory
#> names : 2016-~00:00, 2016-~00:00, 2016-~00:00, 2016-~00:00, 2016-~00:00, 2016-~00:00
#> min values : 290.0364, 288.9316, 288.7990, 288.3621, 288.3680, 288.2335
#> max values : 299.8894, 299.8691, 299.9066, 299.9170, 299.7626, 299.5948
::plot(r[names(r)[1]]) terra
A CFData
object can also be written back to a netCDF
file. The object will have all its relevant attributes and properties
written together with the actual data: axes, bounds, attributes,
CRS.
# Save a CFData instance to a netCDF file on disk
$save("~/path/file.nc") ts
Discrete Sampling Geometries (DSG) map almost directly to the
venerable data.frame
in R (with several exceptions). In
that sense, they are rather distinct from array-based data sets. At the
moment there is no specific code for DSG, but the simplest layouts can
currently already be read (without any warranty). Various methods, such
as CFVariable::subset()
or CFData::array()
will fail miserably, and you are well-advised to try no more than the
empty array indexing operator CFVariable::[]
which will
yield the full data variable
with column and row names set as an array, of
CFVariable::data()
to get the whole data variable as a
CFData
object for further processing. You can identify a
DSG data set by the featureType
attribute of the
CFDataset
.
More comprehensive support for DSG is in the development plan.
Package ncdfCF
is in the early phases of development. It
supports reading of groups, variables, dimensions, user-defined data
types, attributes and data from netCDF resources in “classic” and
“netcdf4” formats; and can write single data variables back to a netCDF
file. From the CF Metadata Conventions it supports identification of
dimension axes, interpretation of the “time” dimension, name resolution
when using groups, reading of “bounds” information, parametric vertical
coordinates, auxiliary coordinate variables, labels, and grid mapping
information.
Development plans for the near future focus on supporting the below features:
CAUTION: Package
ncdfCF
is still in the early phases of development. While
extensively tested on multiple well-structured datasets, errors may
still occur, particularly in datasets that do not adhere to the CF
Metadata Conventions.
Installation from CRAN of the latest release:
install.packages("ncdfCF")
You can install the development version of ncdfCF
from
GitHub with:
# install.packages("devtools")
devtools::install_github("pvanlaake/ncdfCF")