Memory protection: controlling automatic materialization

Unlike traditional data frames, duckplyr defers computation until absolutely necessary, allowing DuckDB to optimize execution. This article explains how to control the materialization of data to maintain a seamless dplyr-like experience while remaining cautious of memory usage.

library(conflicted)
library(dplyr)
conflict_prefer("filter", "dplyr")
#> [conflicted] Removing existing preference.
#> [conflicted] Will prefer dplyr::filter over any other package.

Introduction

From a user’s perspective, data frames backed by duckplyr, with class "duckplyr_df", behave as regular data frames in almost all respects. In particular, direct column access like df$x, or retrieving the number of rows with nrow(), works identically. Conceptually, duckplyr frames are “eager”:

df <-
  duckplyr::duckdb_tibble(x = 1:3) |>
  mutate(y = x + 1)
df
#> # A duckplyr data frame: 2 variables
#>       x     y
#>   <int> <dbl>
#> 1     1     2
#> 2     2     3
#> 3     3     4

class(df)
#> [1] "duckplyr_df" "tbl_df"      "tbl"         "data.frame"

df$y
#> [1] 2 3 4

nrow(df)
#> [1] 3

Under the hood, two key differences provide improved performance and usability:

The term “prudence” is introduced here to set a clear distinction from the concept of “laziness”, and because “control of automatic materialization” is a mouthful.

Eager and lazy computation

For a duckplyr frame that is the result of a dplyr operation, accessing column data or retrieving the number of rows will trigger a computation that is carried out by DuckDB, not dplyr. In this sense, duckplyr frames are also “lazy”: the computation is deferred until the last possible moment, allowing DuckDB to optimize the whole pipeline.

Example

This is explained in the following example that computes the mean arrival delay for flights departing from Newark airport (EWR) by day and month:

flights <- duckplyr::flights_df()

flights_duckdb <-
  flights |>
  duckplyr::as_duckdb_tibble()

system.time(
  mean_arr_delay_ewr <-
    flights_duckdb |>
    filter(origin == "EWR", !is.na(arr_delay)) |>
    summarize(
      .by = month,
      mean_arr_delay = mean(arr_delay),
      min_arr_delay = min(arr_delay),
      max_arr_delay = max(arr_delay),
      median_arr_delay = median(arr_delay),
    )
)
#>    user  system elapsed 
#>   0.006   0.000   0.006

Setting up the pipeline is fast, the size of the data does not affect the setup costs. Because the computation is deferred, DuckDB can optimize the whole pipeline, which can be seen in the output below:

mean_arr_delay_ewr |>
  explain()
#> ┌---------------------------┐
#> │          ORDER_BY         │
#> │    --------------------   │
#> │      dataframe_42_42      │
#> │ 42.___row_number ASC│
#> └-------------┬-------------┘
#> ┌-------------┴-------------┐
#> │         PROJECTION        │
#> │    --------------------   │
#> │           month           │
#> │       ___row_number       │
#> │       mean_arr_delay      │
#> │       min_arr_delay       │
#> │       max_arr_delay       │
#> │      median_arr_delay     │
#> │                           │
#> │        ~33677 Rows        │
#> └-------------┬-------------┘
#> ┌-------------┴-------------┐
#> │       HASH_GROUP_BY       │
#> │    --------------------   │
#> │         Groups: #0        │
#> │                           │
#> │        Aggregates:        │
#> │    sum_no_overflow(#1)    │
#> │          min(#2)          │
#> │    sum_no_overflow(#3)    │
#> │          avg(#4)          │
#> │          min(#5)          │
#> │          max(#6)          │
#> │     quantile_cont(#7)     │
#> │                           │
#> │        ~33677 Rows        │
#> └-------------┬-------------┘
#> ┌-------------┴-------------┐
#> │         PROJECTION        │
#> │    --------------------   │
#> │           month           │
#> │ CASE  WHEN ((___row_number│
#> │  IS NULL)) THEN (1) ELSE 0│
#> │             END
#> │       ___row_number       │
#> │ CASE  WHEN ((arr_delay IS │
#> │ NULL)) THEN (1) ELSE 0 END
#> │         arr_delay         │
#> │         arr_delay         │
#> │         arr_delay         │
#> │         arr_delay         │
#> │                           │
#> │        ~67355 Rows        │
#> └-------------┬-------------┘
#> ┌-------------┴-------------┐
#> │         PROJECTION        │
#> │    --------------------   │
#> │             #0            │
#> │             #1            │
#> │             #2            │
#> │                           │
#> │        ~67355 Rows        │
#> └-------------┬-------------┘
#> ┌-------------┴-------------┐
#> │      STREAMING_WINDOW     │
#> │    --------------------   │
#> │        Projections:       │
#> │    ROW_NUMBER() OVER ()   │
#> └-------------┬-------------┘
#> ┌-------------┴-------------┐
#> │          ORDER_BY         │
#> │    --------------------   │
#> │      dataframe_42_42      │
#> │ 42.___row_number ASC│
#> └-------------┬-------------┘
#> ┌-------------┴-------------┐
#> │         PROJECTION        │
#> │    --------------------   │
#> │             #0            │
#> │             #1            │
#> │             #3            │
#> │                           │
#> │        ~67355 Rows        │
#> └-------------┬-------------┘
#> ┌-------------┴-------------┐
#> │           FILTER          │
#> │    --------------------   │
#> │ ((NOT (arr_delay IS NULL))│
#> │    AND (origin = 'EWR'))  │
#> │                           │
#> │        ~67355 Rows        │
#> └-------------┬-------------┘
#> ┌-------------┴-------------┐
#> │         PROJECTION        │
#> │    --------------------   │
#> │             #0            │
#> │             #1            │
#> │             #2            │
#> │             #3            │
#> │                           │
#> │        ~336776 Rows       │
#> └-------------┬-------------┘
#> ┌-------------┴-------------┐
#> │      STREAMING_WINDOW     │
#> │    --------------------   │
#> │        Projections:       │
#> │    ROW_NUMBER() OVER ()   │
#> └-------------┬-------------┘
#> ┌-------------┴-------------┐
#> │     R_DATAFRAME_SCAN      │
#> │    --------------------   │
#> │      Text: data.frame     │
#> │                           │
#> │        Projections:       │
#> │           month           │
#> │         arr_delay         │
#> │           origin          │
#> │                           │
#> │        ~336776 Rows       │
#> └---------------------------┘

The first step in the pipeline is to prune the unneeded columns, only origin, month, and arr_delay are kept. The result becomes available when accessed:

system.time(mean_arr_delay_ewr$mean_arr_delay[[1]])
#>    user  system elapsed 
#>   0.022   0.001   0.013

Comparison

The functionality is similar to lazy tables in dbplyr and lazy frames in dtplyr. However, the behavior is different: at the time of writing, the internal structure of a lazy table or frame is different from a data frame, and columns cannot be accessed directly.

Eager 😃 Lazy 😴
dplyr
dbplyr
dtplyr
duckplyr

In contrast, with dplyr, each intermediate step and also the final result is a proper data frame, and computed right away, forfeiting the opportunity for optimization:

system.time(
  flights |>
    filter(origin == "EWR", !is.na(arr_delay)) |>
    summarize(
      .by = c(month, day),
      mean_arr_delay = mean(arr_delay),
      min_arr_delay = min(arr_delay),
      max_arr_delay = max(arr_delay),
      median_arr_delay = median(arr_delay),
    )
)
#>    user  system elapsed 
#>   0.006   0.000   0.006

See also the duckplyr: dplyr Powered by DuckDB blog post for more information.

Prudence

Being both “eager” and “lazy” at the same time introduces a challenge: it is too easy to accidentally trigger computation, which is prohibitive if an intermediate result is too large to fit into memory. Prudence is a setting for duckplyr frames that limits the size of the data that is materialized automatically.

Concept

Three levels of prudence are available:

For lavish duckplyr frames, as in the two previous examples, the underlying DuckDB computation is carried out upon the first request. Once the results are computed, they are cached and subsequent requests are fast. This is a good choice for small to medium-sized data, where DuckDB can provide a nice speedup but materializing the data is affordable at any stage. This is the default for duckdb_tibble() and as_duckdb_tibble().

For stingy duckplyr frames, accessing a column or requesting the number of rows triggers an error. This is a good choice for large data sets where the cost of materializing the data may be prohibitive due to size or computation time, and the user wants to control when the computation is carried out and where the results are stored. Results can be materialized explicitly with collect() and other functions.

Thrifty duckplyr frames are a compromise between lavish and stingy, discussed further below.

Example

Passing prudence = "stingy" to as_duckdb_tibble() creates a stingy duckplyr frame.

flights_stingy <-
  flights |>
  duckplyr::as_duckdb_tibble(prudence = "stingy")

The data can be displayed, and column names and types can be accessed.

flights_stingy
#> # A duckplyr data frame: 19 variables
#>     year month   day dep_time sched_dep_time dep_delay arr_time sched_arr_time
#>    <int> <int> <int>    <int>          <int>     <dbl>    <int>          <int>
#>  1  2013     1     1      517            515         2      830            819
#>  2  2013     1     1      533            529         4      850            830
#>  3  2013     1     1      542            540         2      923            850
#>  4  2013     1     1      544            545        -1     1004           1022
#>  5  2013     1     1      554            600        -6      812            837
#>  6  2013     1     1      554            558        -4      740            728
#>  7  2013     1     1      555            600        -5      913            854
#>  8  2013     1     1      557            600        -3      709            723
#>  9  2013     1     1      557            600        -3      838            846
#> 10  2013     1     1      558            600        -2      753            745
#> # ℹ more rows
#> # ℹ 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
#> #   tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
#> #   hour <dbl>, minute <dbl>, time_hour <dttm>

names(flights_stingy)[1:10]
#>  [1] "year"           "month"          "day"            "dep_time"      
#>  [5] "sched_dep_time" "dep_delay"      "arr_time"       "sched_arr_time"
#>  [9] "arr_delay"      "carrier"

class(flights_stingy)
#> [1] "prudent_duckplyr_df" "duckplyr_df"         "tbl_df"             
#> [4] "tbl"                 "data.frame"

class(flights_stingy[[1]])
#> [1] "integer"

On the other hand, accessing a column or requesting the number of rows triggers an error:

nrow(flights_stingy)
#> Error: Materialization is disabled, use collect() or as_tibble() to materialize.

flights_stingy[[1]]
#> Error: Materialization is disabled, use collect() or as_tibble() to materialize.

This means that stingy duckplyr frames can also be used to enforce DuckDB operation for a pipeline.

Enforcing DuckDB operation

For operations not supported by duckplyr, the original dplyr implementation is used as a fallback. As the original dplyr implementation accesses columns directly, the data must be materialized before a fallback can be executed. Therefore, stingy frames allow you to check that all operations are supported by DuckDB: for a stingy frame, fallbacks to dplyr are not possible.

flights_stingy |>
  group_by(origin) |>
  summarize(n = n()) |>
  ungroup()
#> Error in `group_by()`:
#> ! This operation cannot be carried out by DuckDB, and the input is a
#>   stingy duckplyr frame.
#> • Try `summarise(.by = ...)` or `mutate(.by = ...)` instead of `group_by()` and
#>   `ungroup()`.
#> ℹ Use `compute(prudence = "lavish")` to materialize to temporary storage and
#>   continue with duckplyr.
#> ℹ See `vignette("prudence")` for other options.

The same pipeline with a lavish frame works, but the computation is carried out by dplyr:

flights_stingy |>
  duckplyr::as_duckdb_tibble(prudence = "lavish") |>
  group_by(origin) |>
  summarize(n = n()) |>
  ungroup()
#> # A tibble: 3 × 2
#>   origin      n
#>   <chr>   <int>
#> 1 EWR    120835
#> 2 JFK    111279
#> 3 LGA    104662

By using operations supported by duckplyr and avoiding fallbacks as much as possible, your pipelines will be executed by DuckDB in an optimized way.

From stingy to lavish

A stingy duckplyr frame can be converted to a lavish one with as_duckdb_tibble(prudence = "lavish"). The collect.duckplyr_df() method triggers computation and converts to a plain tibble. The difference between the two is the class of the returned object:

flights_stingy |>
  duckplyr::as_duckdb_tibble(prudence = "lavish") |>
  class()
#> [1] "duckplyr_df" "tbl_df"      "tbl"         "data.frame"

flights_stingy |>
  collect() |>
  class()
#> [1] "tbl_df"     "tbl"        "data.frame"

The same behavior is achieved with as_tibble() and as.data.frame():

flights_stingy |>
  as_tibble() |>
  class()
#> [1] "tbl_df"     "tbl"        "data.frame"

flights_stingy |>
  as.data.frame() |>
  class()
#> [1] "data.frame"

Comparison

Stingy duckplyr frames behave like lazy tables in dbplyr and lazy frames in dtplyr: the computation only starts when you explicitly request it with collect.duckplyr_df() or through other means. However, stingy duckplyr frames can be converted to lavish ones at any time, and vice versa. In dtplyr and dbplyr, there are no lavish frames: collection always needs to be explicit.

Thrift

Thrifty is a compromise between stingy and lavish. Materialization is allowed for data up to a certain size, measured in cells (values) and rows in the resulting data frame.

nrow(flights)
#> [1] 336776
flights_partial <-
  flights |>
  duckplyr::as_duckdb_tibble(prudence = "thrifty")

With this setting, the data is materialized only if the result has fewer than 1,000,000 cells (rows multiplied by columns).

flights_partial |>
  select(origin, dest, dep_delay, arr_delay) |>
  nrow()
#> Error: Materialization would result in more than 250000 rows. Use collect() or as_tibble() to materialize.

The original input is too large to be materialized, so the operation fails. On the other hand, the result after aggregation is small enough to be materialized:

flights_partial |>
  count(origin) |>
  nrow()
#> [1] 3

Thrifty is a good choice for data sets where the cost of materializing the data is prohibitive only for large results. This is the default for the ingestion functions like read_parquet_duckdb().

Conclusion

The duckplyr package provides

Automatic materialization can be dangerous for memory with large data, so duckplyr provides a setting called prudence that controls automatic materialization: is the data automatically materialized always (“lavish” frames), never (“stingy” frames) or up to a certain size (“thrifty” frames).

See vignette("large") for more details on working with large data sets, vignette("fallback") for fallbacks to dplyr, and vignette("limits") for the operations supported by duckplyr.