
Package ‘EFAfactors’
November 19, 2024

Type Package

Title Determining the Number of Factors in Exploratory Factor Analysis

Version 1.1.1

Date 2024-11-19

Maintainer Haijiang Qin <haijiang133@outlook.com>

Description Provides a collection of standard factor retention methods in Exploratory Factor Analy-
sis (EFA), making it easier to determine the number of factors. Traditional meth-
ods such as the scree plot by Cattell (1966) <doi:10.1207/s15327906mbr0102_10>, Kaiser-
Guttman Crite-
rion (KGC) by Guttman (1954) <doi:10.1007/BF02289162> and Kaiser (1960) <doi:10.1177/001316446002000116>, and flex-
ible Parallel Analysis (PA) by Horn (1965) <doi:10.1007/BF02289447> based on eigenval-
ues form PCA or EFA are readily available. This package also implements several newer meth-
ods, such as the Empirical Kaiser Criterion (EKC) by Braeken and van As-
sen (2017) <doi:10.1037/met0000074>, Comparison Data (CD) by Rus-
cio and Roche (2012) <doi:10.1037/a0025697>, and Hull method by Lorenzo-
Seva et al. (2011) <doi:10.1080/00273171.2011.564527>, as well as some AI-based meth-
ods like Comparison Data Forest (CDF) by Goretzko and Ruscio (2024) <doi:10.3758/s13428-
023-02122-4> and Factor Forest (FF) by Goretzko and Buh-
ner (2020) <doi:10.1037/met0000262>. Additionally, it includes a deep neural net-
work (DNN) trained on large-scale datasets that can efficiently and reliably determine the num-
ber of factors.

License GPL-3

Depends R (>= 4.1.0)

Imports BBmisc, ddpcr, ineq, MASS, Matrix, mlr, ParamHelpers, proxy,
psych, ranger, reticulate, Rcpp, RcppArmadillo, SimCorMultRes,
xgboost

LinkingTo Rcpp, RcppArmadillo

RoxygenNote 7.3.2

Encoding UTF-8

NeedsCompilation yes

Collate 'CD.R' 'CDF.R' 'data.bfi.R' 'data.datasets.R' 'data.scaler.R'
'DNN_predictor.R' 'EFAhclust.R' 'EFAindex.R' 'EFAkmeans.R'

1

https://doi.org/10.1207/s15327906mbr0102_10
https://doi.org/10.1007/BF02289162
https://doi.org/10.1177/001316446002000116
https://doi.org/10.1007/BF02289447
https://doi.org/10.1037/met0000074
https://doi.org/10.1037/a0025697
https://doi.org/10.1080/00273171.2011.564527
https://doi.org/10.3758/s13428-023-02122-4
https://doi.org/10.3758/s13428-023-02122-4
https://doi.org/10.1037/met0000262

2 Contents

'EFAvote.R' 'EKC.R' 'EFAscreet.R' 'EFAsim.data.R'
'extractor.feature.DNN.R' 'extractor.feature.FF.R'
'factor.analysis.R' 'FF.R' 'GenData.R' 'get.runs.R' 'Hull.R'
'KGC.R' 'load.R' 'model.xgb.R' 'normalizor.R' 'PA.R' 'plot.R'
'print.R' 'RcppExports.R' 'af.softmax.R' 'utils.R' 'zzz.R'

Repository CRAN

URL https://haijiangqin.com/EFAfactors/

Author Haijiang Qin [aut, cre, cph],
Lei Guo [aut, cph]

Date/Publication 2024-11-19 08:00:02 UTC

Contents
af.softmax . 3
CD . 4
CDF . 7
data.bfi . 10
data.datasets . 13
data.scaler . 13
DNN_predictor . 14
EFAhclust . 17
EFAindex . 20
EFAkmeans . 21
EFAscreet . 23
EFAsim.data . 25
EFAvote . 27
EKC . 28
extractor.feature.DNN . 31
extractor.feature.FF . 33
factor.analysis . 35
FF . 38
GenData . 41
Hull . 44
KGC . 46
load_DNN . 48
load_scaler . 49
load_xgb . 50
model.xgb . 50
normalizor . 51
PA . 52
plot.CD . 55
plot.CDF . 56
plot.DNN_predictor . 57
plot.EFAhclust . 57
plot.EFAkmeans . 58
plot.EFAscreet . 59

https://haijiangqin.com/EFAfactors/

af.softmax 3

plot.EFAvote . 61
plot.EKC . 62
plot.FF . 63
plot.Hull . 64
plot.KGC . 65
plot.PA . 66
predictLearner.classif.xgboost.earlystop . 67
print.CD . 68
print.CDF . 68
print.DNN_predictor . 69
print.EFAdata . 69
print.EFAhclust . 70
print.EFAkmeans . 70
print.EFAscreet . 71
print.EFAvote . 72
print.EKC . 72
print.FF . 73
print.Hull . 73
print.KGC . 74
print.PA . 74

Index 76

af.softmax An Activation Function: Softmax

Description

This function computes the softmax of a numeric vector. The softmax function transforms a vector
of real values into a probability distribution, where each element is between 0 and 1 and the sum of
all elements is 1. @seealso DNN_predictor

Usage

af.softmax(x)

Arguments

x A numeric vector for which the softmax transformation is to be computed.

Details

The softmax function is calculated as:

softmax(xi) =
exp(xi)∑
j exp(xj)

In the case of overflow (i.e., when exp(x_i) is too large), this function handles Inf values by as-
signing 1 to the corresponding positions and 0 to the others before Softmax. @seealso DNN_predictor

4 CD

Value

A numeric vector representing the softmax-transformed values of x.

Examples

x <- c(1, 2, 3)
af.softmax(x)

CD the Comparison Data (CD) Approach

Description

This function runs the comparison data (CD) approach of Ruscio & Roche (2012).

Usage

CD(
response,
nfact.max = 10,
N.pop = 10000,
N.Samples = 500,
Alpha = 0.3,
cor.type = "pearson",
use = "pairwise.complete.obs",
vis = TRUE,
plot = TRUE

)

Arguments

response A required N × I matrix or data.frame consisting of the responses of N individuals
to × I items.

nfact.max The maximum number of factors discussed by CD approach. (default = 10)

N.pop Size of finite populations of simulating.. (default = 10,000)

N.Samples Number of samples drawn from each population. (default = 500)

Alpha Alpha level when testing statistical significance (Wilcoxon Rank Sum and Signed
Rank Tests) of improvement with additional factor. (default = .30)

cor.type A character string indicating which correlation coefficient (or covariance) is to
be computed. One of "pearson" (default), "kendall", or "spearman". @seealso
cor.

use an optional character string giving a method for computing covariances in the
presence of missing values. This must be one of the strings "everything", "all.obs",
"complete.obs", "na.or.complete", or "pairwise.complete.obs" (default). @seealso
cor.

CD 5

vis A Boolean variable that will print the factor retention results when set to TRUE,
and will not print when set to FALSE. (default = TRUE)

plot A Boolean variable that will print the CD plot when set to TRUE, and will not
print it when set to FALSE. @seealso plot.CD. (Default = TRUE)

Details

Ruscio and Roche (2012) proposed a method for determining the number of factors through com-
parison data (CD). This method identifies the appropriate number of factors by finding the solution
that best reproduces the pattern of eigenvalues. CD employs an iterative procedure when generating
comparison data with a known factor structure, taking into account previous factors. Initially, CD
compares whether the simulated comparison data with one latent factor (j=1) reproduces the em-
pirical eigenvalue pattern significantly worse than the two-factor solution (j+1). If so, CD increases
the value of j until further improvements are no longer significant or a preset maximum number of
factors is reached. Specifically, CD involves five steps:

1. Generate random data with either j or j+1 latent factors and calculate the eigenvalues of the
respective correlation matrices.

2. Compute the root mean square error (RMSE) of the difference between the empirical and simu-
lated eigenvalues using the formula

RMSE =

√√√√ p∑
i=1

(λemp,i − λsim,i)2

, where:

• λemp,i: The i-th empirical eigenvalue.

• λsim,i: The i-th simulated eigenvalue.

• p: The number of items or eigenvalues.

. This step produces two RMSEs, corresponding to the different numbers of latent factors.

3. Repeat steps 1 and 2, 500 times (default in the Package).

4. Use a one-sided Wilcoxon test (alpha = 0.30) to assess whether the RMSE is significantly reduced
under the two-factor condition.

5. If the difference in RMSE is not significant, CD suggests selecting j factors. Otherwise, j is
increased by 1, and steps 1 to 4 are repeated.

The code is implemented based on the resources available at:

• https://ruscio.pages.tcnj.edu/quantitative-methods-program-code/

• https://osf.io/gqma2/?view_only=d03efba1fd0f4c849a87db82e6705668

• https://osf.io/mvrau/

Since the CD approach requires extensive data simulation and computation, C++ code is used to
speed up the process.

https://ruscio.pages.tcnj.edu/quantitative-methods-program-code/
https://osf.io/gqma2/?view_only=d03efba1fd0f4c849a87db82e6705668
https://osf.io/mvrau/

6 CD

Value

An object of class CD is a list containing the following components:

nfact The number of factors to be retained.

RMSE.Eigs A matrix containing the root mean square error (RMSE) of the eigenvalues pro-
duced by each simulation for every discussed number of factors.

Sig A boolean variable indicating whether the significance level of the Wilcoxon
Rank Sum and Signed Rank Tests has reached Alpha.

Author(s)

Haijiang Qin <Haijiang133@outlook.com>

References

Auerswald, M., & Moshagen, M. (2019). How to determine the number of factors to retain in
exploratory factor analysis: A comparison of extraction methods under realistic conditions. Psy-
chological methods, 24(4), 468-491. https://doi.org/https://doi.org/10.1037/met0000200.

Goretzko, D., & Buhner, M. (2020). One model to rule them all? Using machine learning algo-
rithms to determine the number of factors in exploratory factor analysis. Psychol Methods, 25(6),
776-786. https://doi.org/10.1037/met0000262.

Ruscio, J., & Roche, B. (2012). Determining the number of factors to retain in an exploratory
factor analysis using comparison data of known factorial structure. Psychological Assessment, 24,
282–292. http://dx.doi.org/10.1037/a0025697.

See Also

GenData

Examples

library(EFAfactors)
set.seed(123)

##Take the data.bfi dataset as an example.
data(data.bfi)

response <- as.matrix(data.bfi[, 1:25]) ## loading data
response <- na.omit(response) ## Remove samples with NA/missing values

Transform the scores of reverse-scored items to normal scoring
response[, c(1, 9, 10, 11, 12, 22, 25)] <- 6 - response[, c(1, 9, 10, 11, 12, 22, 25)] + 1

Run CD function with default parameters.

CD.obj <- CD(response)

print(CD.obj)

CDF 7

CD plot
plot(CD.obj)

Get the RMSE.Eigs and nfact results.
RMSE.Eigs <- CD.obj$RMSE.Eigs
nfact <- CD.obj$nfact

head(RMSE.Eigs)
print(nfact)

Limit the maximum number of factors to 8, with populations set to 5000.

CD.obj <- CD(response, nfact.max=8, N.pop = 5000)

print(CD.obj)

CD plot
plot(CD.obj)

Get the RMSE.Eigs and nfact results.
RMSE.Eigs <- CD.obj$RMSE.Eigs
nfact <- CD.obj$nfact

head(RMSE.Eigs)
print(nfact)

CDF the Comparison Data Forest (CDF) Approach

Description

The Comparison Data Forest (CDF; Goretzko & Ruscio, 2019) approach is a combination of Ran-
dom Forest with the comparison data (CD) approach.

Usage

CDF(
response,
num.trees = 500,
mtry = 13,
nfact.max = 10,

8 CDF

N.pop = 10000,
N.Samples = 500,
cor.type = "pearson",
use = "pairwise.complete.obs",
vis = TRUE,
plot = TRUE

)

Arguments

response A required N × I matrix or data.frame consisting of the responses of N individuals
to × I items.

num.trees the number of trees in the Random Forest. (default = 500) See details.

mtry the maximum depth for each tree. (default = 13) See details.

nfact.max The maximum number of factors discussed by CD approach. (default = 10)

N.pop Size of finite populations of simulating.. (default = 10,000)

N.Samples Number of samples drawn from each population. (default = 500)

cor.type A character string indicating which correlation coefficient (or covariance) is to
be computed. One of "pearson" (default), "kendall", or "spearman". @seealso
cor.

use an optional character string giving a method for computing covariances in the
presence of missing values. This must be one of the strings "everything", "all.obs",
"complete.obs", "na.or.complete", or "pairwise.complete.obs" (default). @seealso
cor.

vis A Boolean variable that will print the factor retention results when set to TRUE,
and will not print when set to FALSE. (default = TRUE)

plot A Boolean variable that will print the CDF plot when set to TRUE, and will not
print it when set to FALSE. @seealso plot.CDF. (Default = TRUE)

Details

The Comparison Data Forest (CDF; Goretzko & Ruscio, 2019) Approach is a combination of ran-
dom forest with the comparison data (CD) approach. Its basic steps involve using the method of
Ruscio & Roche (2012) to simulate data with different factor counts, then extracting features from
this data to train a random forest model. Once the model is trained, it can be used to predict the
number of factors in empirical data. The algorithm consists of the following steps:

1. **Simulation Data:**

(1) For each value of nfact in the range from 1 to nfactmax, generate a population data using the
GenData function.

(2) Each population is based on nfact factors and consists of Npop observations.

(3) For each generated population, repeat the following for Nrep times, For the j-th in Nrep: a.
Draw a sample Nsam from the population that matches the size of the empirical data; b.
Compute a feature set feanfact,j from each Nsam.

(4) Combine all the generated feature sets feanfact,j into a data frame as datatrain,nfact.

CDF 9

(5) Combine all datatrain,nfact into a final data frame as the training dataset datatrain.

2. **Training RF:**

Train a Random Forest model RF using the combined datatrain.

3. **Prediction the Empirical Data:**

(1) Calculate the feature set feaempfor the empirical data.

(2) Use the trained Random Forest model RF to predict the number of factors nfactemp for the
empirical data:

nfactemp = RF (feaemp)

According to Goretzko & Ruscio (2024) and Breiman (2001), the number of trees in the Random
Forest num.trees is recommended to be 500. The Random Forest in CDF performs a classification
task, so the recommended maximum depth for each tree mtry is

√
q (where q is the number of

features), which results in mtry =
√
181 = 13.

Since the CDF approach requires extensive data simulation and computation, which is much more
time consuming than the CD Approach, C++ code is used to speed up the process.

Value

An object of class CDF is a list containing the following components:

nfact The number of factors to be retained.

RF the trained Random Forest model

probability A matrix containing the probabilities for factor numbers ranging from 1 to
nfact.max (1xnfact.max), where the number in the f-th column represents the
probability that the number of factors for the response is f.

features A matrix (1×181) containing all the features for determining the number of fac-
tors. @seealso extractor.feature.FF

Author(s)

Haijiang Qin <Haijiang133@outlook.com>

References

Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5-32. https://doi.org/10.1023/A:1010933404324

Goretzko, D., & Ruscio, J. (2024). The comparison data forest: A new comparison data approach to
determine the number of factors in exploratory factor analysis. Behavior Research Methods, 56(3),
1838-1851. https://doi.org/10.3758/s13428-023-02122-4

Ruscio, J., & Roche, B. (2012). Determining the number of factors to retain in an exploratory
factor analysis using comparison data of known factorial structure. Psychological Assessment, 24,
282–292. http://dx.doi.org/10.1037/a0025697.

See Also

GenData

10 data.bfi

Examples

library(EFAfactors)
set.seed(123)

##Take the data.bfi dataset as an example.
data(data.bfi)

response <- as.matrix(data.bfi[, 1:25]) ## loading data
response <- na.omit(response) ## Remove samples with NA/missing values

Transform the scores of reverse-scored items to normal scoring
response[, c(1, 9, 10, 11, 12, 22, 25)] <- 6 - response[, c(1, 9, 10, 11, 12, 22, 25)] + 1

Run CDF function with default parameters.

CDF.obj <- CDF(response)

print(CDF.obj)

CDF plot
plot(CDF.obj)

Get the nfact results.
nfact <- CDF.obj$nfact
print(nfact)

Limit the maximum number of factors to 8, with populations set to 5000.

CDF.obj <- CDF(response, nfact.max=8, N.pop = 5000)

print(CDF.obj)

CDF plot
plot(CDF.obj)

Get the nfact results.
nfact <- CDF.obj$nfact
print(nfact)

data.bfi 25 Personality Items Representing 5 Factors

data.bfi 11

Description

This dataset includes 25 self-report personality items sourced from the International Personality
Item Pool (ipip.ori.org) as part of the Synthetic Aperture Personality Assessment (SAPA) web-based
personality assessment project. The dataset contains responses from 2,800 examinees. Additionally,
three demographic variables (sex, education, and age) are included.

Format

A data frame with 2,800 observations on 28 variables. The variables include:

• A1 - Am indifferent to the feelings of others. (q_146)

• A2 - Inquire about others’ well-being. (q_1162)

• A3 - Know how to comfort others. (g_1206)

• A4 - Love children. (g_1364)

• A5 - Make people feel at ease. (q_1419)

• C1 - Am exacting in my work. (q_124)

• C2 - Continue until everything is perfect. (q_530)

• C3 - Do things according to a plan. (q_619)

• C4 - Do things in a half-way manner. (g_626)

• C5 - Waste my time. (g_1949)

• E1 - Don’t talk a lot. (q_712)

• E2 - Find it difficult to approach others. (q_901)

• E3 - Know how to captivate people. (q_1205)

• E4 - Make friends easily. (q_1410)

• E5 - Take charge. (g_1768)

• N1 - Get angry easily. (q_952)

• N2 - Get irritated easily. (q_974)

• N3 - Have frequent mood swings. (q_1099)

• N4 - Often feel blue. (g_1479)

• N5 - Panic easily. (q_1505)

• O1 - Am full of ideas. (q_128)

• O2 - Avoid difficult reading material. (g_316)

• O3 - Carry the conversation to a higher level. (q_492)

• O4 - Spend time reflecting on things. (g_1738)

• O5 - Will not probe deeply into a subject. (q_1964)

• gender - Gender: Males = 1, Females = 2

• education - Education level: 1 = High School, 2 = Finished High School, 3 = Some College,
4 = College Graduate, 5 = Graduate Degree

• age - Age in years

12 data.bfi

Details

The 25 items are organized by five factors: Agreeableness, Conscientiousness, Extraversion, Neu-
roticism, and Openness. The scoring key is created using make.keys, and scores are calculated
using score.items. These factors are useful for IRT-based latent factor analysis of the polychoric
correlation matrix. Endorsement plots and item information functions reveal variations in item qual-
ity. Responses were collected on a 6-point scale: 1 = Very Inaccurate, 2 = Moderately Inaccurate, 3
= Slightly Inaccurate, 4 = Slightly Accurate, 5 = Moderately Accurate, 6 = Very Accurate, as part
of the Synthetic Aperture Personality Assessment (SAPA) project (https://www.sapa-project.org/).
For examples of data collection techniques, visit https://www.sapa-project.org/ or the International
Cognitive Ability Resource at https://icar-project.org. The items were sampled from the Interna-
tional Personality Item Pool of Lewis Goldberg using SAPA sampling techniques. This dataset is a
sample from the larger SAPA data bank.

Note

The data.bfi data set and items should not be confused with the BFI (Big Five Inventory) of Oliver
Johnand colleagues (John, O. P, Donahue, E. M., & Kentle, R.L. (1991). The Big Five Inventory
Versions 4a and 54. Berkeley, CA: University of California, Berkeley, Institute of Personality and
Social Research.)

Source

The items are from the ipip (Goldberg, 1999). The data are from the SAPA project (Revelle, Wiltand
Rosenthal, 2010), collected Spring, 2010(https://www.sapa-project.org/).

References

Goldberg, L.R. (1999). A broad-bandwidth, public domain, personality inventory measuring the
lower-level facets of several five-factor models. In Mervielde, I., Deary, I., De Fruyt, F., & Osten-
dorf, F. (Eds.), Personality psychology in Europe (Vol. 7, pp. 7-28). Tilburg University Press.

Revelle, W., Wilt, J., & Rosenthal, A. (2010). Individual Differences in Cognition: New Meth-
ods for Examining the Personality-Cognition Link. In Gruszka, A., Matthews, G., & Szymura,
B. (Eds.), Handbook of Individual Differences in Cognition: Attention, Memory and Executive
Control (pp. 117-144). Springer.

Revelle, W., Condon, D., Wilt, J., French, J.A., Brown, A., & Elleman, L.G. (2016). Web and
phone-based data collection using planned missing designs. In Fielding, N.G., Lee, R.M., & Blank,
G. (Eds.), SAGE Handbook of Online Research Methods (2nd ed., pp. 100-116). Sage Publications.

Examples

data(data.bfi)
head(data.bfi)

data.datasets 13

data.datasets Subset Dataset for Training the Pre-Trained Deep Neural Network
(DNN)

Description

This dataset is a subset of the full datasets, consisting of 1,000 samples from the original 10,000,000-
sample datasets.

Format

A 1,000×55 matrix, where the first 54 columns represent feature values and the last column repre-
sents the labels, which correspond to the number of factors associated with the features.

Note

Methods for generating and extracting features from the dataset can be found in DNN_predictor.

See Also

DNN_predictor, load_scaler, data.scaler, normalizor

Examples

data(data.datasets)
head(data.datasets)

data.scaler the Scaler for the Pre-Trained Deep Neural Network (DNN)

Description

This dataset contains the means and standard deviations of the 10,000,000 datasets for training
Pre-Trained Deep Neural Network (DNN), which can be used to determine the number of factors.

Format

A list containing two vectors, each of length 54:

means A numeric vector representing the means of the 54 features extracted from the 10,000,000
datasets.

sds A numeric vector representing the standard deviations of the 54 features extracted from the
10,000,000 datasets.

14 DNN_predictor

See Also

DNN_predictor, load_scaler, data.datasets, normalizor

Examples

data(data.scaler)
print(data.scaler)

data.scaler <- load_scaler()
print(data.scaler)

DNN_predictor A Pre-Trained Deep Neural Network (DNN) for Determining the Num-
ber of Factors

Description

This function will invoke a pre-trained deep neural network that can reliably perform the task of
determining the number of factors. The maximum number of factors that the network can discuss
is 10. The DNN model is implemented in Python and trained on PyTorch (https://pytorch.org/)
with CUDA 11.8 for acceleration. After training, the DNN was saved as a DNN.onnx file. The
DNN_predictor function performs inference by loading the DNN.onnx file in both Python and R
environments. Therefore, please note that Python (suggested >= 3.10) and the libraries numpy and
onnxruntime are required.

To run this function, Python is required, along with the installation of numpy and onnxruntime. See
more in Details and Note.

Usage

DNN_predictor(
response,
cor.type = "pearson",
use = "pairwise.complete.obs",
vis = TRUE,
plot = TRUE

)

Arguments

response A required N × I matrix or data.frame consisting of the responses of N individuals
to I items.

cor.type A character string indicating which correlation coefficient (or covariance) is to
be computed. One of "pearson" (default), "kendall", or "spearman". @seealso
cor.

DNN_predictor 15

use An optional character string giving a method for computing covariances in the
presence of missing values. This must be one of the strings "everything", "all.obs",
"complete.obs", "na.or.complete", or "pairwise.complete.obs" (default). @seealso
cor.

vis A Boolean variable that will print the factor retention results when set to TRUE,
and will not print when set to FALSE. (default = TRUE)

plot A Boolean variable that will print the DNN_predictor plot when set to TRUE,
and will not print it when set to FALSE. @seealso plot.DNN_predictor. (Default
= TRUE)

Details

Due to the improved performance of deep learning models with larger datasets (Chen et al., 2017),
a total of 10,000,000 datasets (data.datasets) were simulated to extract features for training deep
learning neural networks. Each dataset was generated following the methods described by Auer-
swald & Moshagen (2019) and Goretzko & Buhner (2020), with the following specifications:

• Factor number: F ~ U[1,10]

• Sample size: N ~ U[100,1000]

• Number of variables per factor: vpf ~ [3,20]

• Factor correlation: fc ~ U[0.0,0.4]

• Primary loadings: pl ~ U[0.35,0.80]

• Cross-loadings: cl ~ U[-0.2,0.2]

A population correlation matrix was created for each data set based on the following decomposition:

Σ = ΛΦΛT +∆

where Λ is the loading matrix, Φ is the factor correlation matrix, and ∆ is a diagonal matrix, with
∆ = 1− diag(ΛΦΛT). The purpose of ∆ is to ensure that the diagonal elements of Σ are 1.

The response data for each subject was simulated using the following formula:

Xi = Li + ϵi, 1 ≤ i ≤ I

where Li follows a normal distribution N(0, σ), representing the contribution of latent factors, and
ϵi is the residual term following a standard normal distribution. Li and ϵi are uncorrelated, and ϵi
and ϵj are also uncorrelated.

For each simulated dataset, a total of 6 types of features (which can be classified into 2 types;
@seealso extractor.feature.DNN) are extracted and compiled into a feature vector, consisting of 54
features: 8 + 8 + 8 + 10 + 10 + 10. These features are as follows:

1. Clustering-Based Features

(1) Hierarchical clustering is performed with correlation coefficients as dissimilarity. The top 9 tree
node heights are calculated, and all heights are divided by the maximum height. The heights
from the 2nd to 9th nodes are used as features. @seealso EFAhclust

(2) Hierarchical clustering with Euclidean distance as dissimilarity is performed. The top 9 tree
node heights are calculated, and all heights are divided by the maximum height. The heights
from the 2nd to 9th nodes are used as features. @seealso EFAhclust

16 DNN_predictor

(3) K-means clustering is applied with the number of clusters ranging from 1 to 9. The within-
cluster sum of squares (WSS) for clusters 2 to 9 are divided by the WSS for a single cluster.
@seealso EFAkmeans

These three features are based on clustering algorithms. The purpose of division is to normalize the
data. These clustering metrics often contain information unrelated to the number of factors, such as
the number of items and the number of respondents, which can be avoided by normalization. The
reason for using the 2nd to 9th data is that only the top F-1 data are needed to determine the number
of factors F. The first data point is fixed at 1 after the division operations, so it is excluded. This
approach helps in model simplification.

2. Traditional Exploratory Factor Analysis Features (Eigenvalues)

(4) The top 10 largest eigenvalues.

(5) The ratio of the top 10 largest eigenvalues to the corresponding reference eigenvalues from
Empirical Kaiser Criterion (EKC; Braeken & van Assen, 2017). @seealso EKC

(6) The cumulative variance proportion of the top 10 largest eigenvalues.

Only the top 10 elements are used to simplify the model.

The DNN model is implemented in Python and trained on PyTorch (https://download.pytorch.org/whl/cu118)
with CUDA 11.8 for acceleration. After training, the DNN was saved as a DNN.onnx file. The
DNN_predictor function performs inference by loading the DNN.onnx file in both Python and R
environments.

Value

An object of class DNN_predictor is a list containing the following components:

nfact The number of factors to be retained.

features A matrix (1×54) containing all the features for determining the number of factors
by the DNN.

probability A matrix containing the probabilities for factor numbers ranging from 1 to 10
(1x10), where the number in the f-th column represents the probability that the
number of factors for the response is f.

Note

Note that Python and the libraries numpy and onnxruntime are required.

First, please ensure that Python is installed on your computer and that Python is included in the
system’s PATH environment variable. If not, please download and install it from the official website
(https://www.python.org/).

If you encounter an error when running this function stating that the numpy and onnxruntime mod-
ules are missing:

Error in py_module_import(module, convert = convert) :

ModuleNotFoundError: No module named 'numpy'

or

Error in py_module_import(module, convert = convert) :

EFAhclust 17

ModuleNotFoundError: No module named 'onnxruntime'

this means that the numpy or onnxruntime library is missing from your Python environment. If
you are using Windows or macOS, please run the command pip install numpy or pip install
onnxruntime in Command Prompt or Windows PowerShell (Windows), or Terminal (macOS). If
you are using Linux, please ensure that pip is installed and use the command pip install numpy
or pip install onnxruntime to install the missing libraries.

Author(s)

Haijiang Qin <Haijiang133@outlook.com>

References

Auerswald, M., & Moshagen, M. (2019). How to determine the number of factors to retain in
exploratory factor analysis: A comparison of extraction methods under realistic conditions. Psy-
chological methods, 24(4), 468-491. https://doi.org/10.1037/met0000200.

Braeken, J., & van Assen, M. A. L. M. (2017). An empirical Kaiser criterion. Psychological
methods, 22(3), 450-466. https://doi.org/10.1037/met0000074.

Goretzko, D., & Buhner, M. (2020). One model to rule them all? Using machine learning algo-
rithms to determine the number of factors in exploratory factor analysis. Psychol Methods, 25(6),
776-786. https://doi.org/10.1037/met0000262.

EFAhclust Hierarchical Clustering for EFA

Description

A function performs clustering on items by calling hclust. Hierarchical cluster analysis on a set of
dissimilarities and methods for analyzing it. The items will be continuously clustered in pairs until
all items are grouped into a single cluster, at which point the process will stop.

Usage

EFAhclust(
response,
dissimilarity.type = "R",
method = "ward.D",
cor.type = "pearson",
use = "pairwise.complete.obs",
nfact.max = 10,
plot = TRUE

)

18 EFAhclust

Arguments

response A required N × I matrix or data.frame consisting of the responses of N individuals
to I items.

dissimilarity.type

A character indicating which kind of dissimilarity is to be computed. One of
"R" or "E" (default) for the correlation coefficient or Euclidean distance.

method the agglomeration method to be used. This should be (an unambiguous ab-
breviation of) one of "ward.D", "ward.D2", "single", "complete", "average" (=
UPGMA), "mcquitty" (= WPGMA), "median" (= WPGMC) or "centroid" (=
UPGMC). (default = "ward.D") @seealso hclust

cor.type A character string indicating which correlation coefficient (or covariance) is to
be computed. One of "pearson" (default), "kendall", or "spearman". @seealso
cor.

use An optional character string giving a method for computing covariances in the
presence of missing values. This must be one of the strings "everything", "all.obs",
"complete.obs", "na.or.complete", or "pairwise.complete.obs" (default). @seealso
cor.

nfact.max The maximum number of factors discussed by the Second-Order Difference
(SOD) approach. (default = 10)

plot A Boolean variable that will print the EFAhclust plot when set to TRUE, and will
not print it when set to FALSE. @seealso plot.EFAhclust. (Default = TRUE)

Details

Hierarchical cluster analysis always merges the two nodes with the smallest dissimilarity, forming
a new node in the process. This continues until all nodes are merged into one large node, at which
point the algorithm terminates. This method undoubtedly creates a hierarchical structure by the end
of the process, which encompasses the relationships between all items: items with high correlation
have short connecting lines between them, while items with low correlation have longer lines. This
hierarchical structure is well-suited to be represented as a binary tree. In this representation, the
dissimilarity between two nodes can be indicated by the height of the tree nodes; the greater the
difference between nodes, the higher the height of the tree nodes connecting them (the longer the
line). Researchers can decide whether two nodes belong to the same cluster based on the height
differences between nodes, which, in exploratory factor analysis, represents whether these two
nodes belong to the same latent factor.

The Second-Order Difference (SOD) approach is a commonly used method for finding the "elbow"
(the point of greatest slope change). According to the principles of exploratory factor analysis, items
belonging to different latent factors have lower correlations, while items under the same factor are
more highly correlated. In hierarchical clustering, this is reflected in the height of the nodes in
the dendrogram, with differences in node heights representing the relationships between items. By
sorting all node heights in descending order and applying the SOD method to locate the elbow, the
number of factors can be determined. @seealso EFAkmeans

Value

An object of class EFAhclust is a list containing the following components:

EFAhclust 19

hc An object of class hclust that describes the tree produced by the clustering
process. @seealso hclust

cor.response A matrix of dimension I × I containing all the correlation coefficients of items.

clusters A list containing all the clusters.

heights A vector containing all the heights of the cluster tree. The heights are arranged
in descending order.

nfact.SOD The number of factors to be retained by the Second-Order Difference (SOD)
approach.

References

Batagelj, V. (1988). Generalized Ward and Related Clustering Problems. In H. H. Bock, Classifica-
tion and Related Methods of Data Analysis the First Conference of the International Federation of
Classification Societies (IFCS), Amsterdam.

Murtagh, F., & Legendre, P. (2014). Ward’s Hierarchical Agglomerative Clustering Method: Which
Algorithms Implement Ward’s Criterion? Journal of Classification, 31(3), 274-295. https://doi.org/10.1007/s00357-
014-9161-z.

Examples

library(EFAfactors)
set.seed(123)

##Take the data.bfi dataset as an example.
data(data.bfi)

response <- as.matrix(data.bfi[, 1:25]) ## loading data
response <- na.omit(response) ## Remove samples with NA/missing values

Transform the scores of reverse-scored items to normal scoring
response[, c(1, 9, 10, 11, 12, 22, 25)] <- 6 - response[, c(1, 9, 10, 11, 12, 22, 25)] + 1

Run EFAhclust function with default parameters.

EFAhclust.obj <- EFAhclust(response)

plot(EFAhclust.obj)

Get the heights.
heights <- EFAhclust.obj$heights
print(heights)

Get the nfact retained by SOD
nfact.SOD <- EFAhclust.obj$nfact.SOD
print(nfact.SOD)

20 EFAindex

EFAindex Various Indeces in EFA

Description

A function performs clustering on items by calling VSS and fa. Apply the Very Simple Structure
(VSS), Comparative Fit Index (CFI), MAP, and other criteria to determine the appropriate number
of factors.

Usage

EFAindex(
response,
nfact.max = 10,
cor.type = "cor",
use = "pairwise.complete.obs"

)

Arguments

response A required N × I matrix or data.frame consisting of the responses of N individuals
to I items.

nfact.max The maximum number of factors discussed by CD approach. (default = 10)

cor.type How to find the correlations: "cor" is Pearson", "cov" is covariance, "tet" is
tetrachoric, "poly" is polychoric, "mixed" uses mixed cor for a mixture of tetra-
chorics, polychorics, Pearsons, biserials, and polyserials, Yuleb is Yulebonett,
Yuleq and YuleY are the obvious Yule coefficients as appropriate.

use an optional character string giving a method for computing covariances in the
presence of missing values. This must be one of the strings "everything", "all.obs",
"complete.obs", "na.or.complete", or "pairwise.complete.obs" (default). @seealso
cor.

Value

A matrix with the following components:

CFI the Comparative Fit Index

RMSEA Root Mean Square Error of Approximation (RMSEA) for each number of factors.

SRMR Standardized Root Mean Square Residual.

MAP Velicer’s MAP values (lower values are better).

BIC Bayesian Information Criterion (BIC) for each number of factors.

SABIC Sample-size Adjusted Bayesian Information Criterion (SABIC) for each number of factors.

EFAkmeans 21

chisq Chi-square statistic from the factor analysis output.

df Degrees of freedom.

prob Probability that the residual matrix is greater than 0.

eChiSq Empirically found chi-square statistic.

eCRMS Empirically found mean residual corrected for degrees of freedom.

eBIC Empirically found BIC based on the empirically found chi-square statistic.

vss VSS fit with complexity 1.

sqresid Squared residual correlations.

fit Factor fit of the complete model.

Examples

library(EFAfactors)
set.seed(123)

##Take the data.bfi dataset as an example.
data(data.bfi)

response <- as.matrix(data.bfi[, 1:25]) ## loading data
response <- na.omit(response) ## Remove samples with NA/missing values

Transform the scores of reverse-scored items to normal scoring
response[, c(1, 9, 10, 11, 12, 22, 25)] <- 6 - response[, c(1, 9, 10, 11, 12, 22, 25)] + 1

Run EFAindex function with default parameters.

EFAindex.matrix <- EFAindex(response)

print(EFAindex.matrix)

EFAkmeans K-means for EFA

Description

A function performs K-means algorithm on items by calling kmeans.

Usage

EFAkmeans(response, nfact.max = 10, plot = TRUE)

22 EFAkmeans

Arguments

response A required N × I matrix or data.frame consisting of the responses of N individuals
to I items.

nfact.max The maximum number of factors discussed by EFAkmeans approach. (default
= 10)

plot A Boolean variable that will print the EFAkmeans plot when set to TRUE, and
will not print it when set to FALSE. @seealso plot.EFAkmeans. (Default =
TRUE)

Details

K-means is a well-established and widely used classical clustering algorithm. It is an unsupervised
machine learning algorithm that requires the number of clusters K to be specified in advance. After
K-means terminates, the total within-cluster sum of squares (WSS) can be calculated to represent
the goodness of fit of the clustering:

WSS =
∑

Ck∈C

∑
i∈Ck

∥i− µk∥2

where C is the set of all clusters. Ck is the k-th cluster. i represents each item in the cluster Ck. µk

is the centroid of cluster Ck.

Similar to the scree plot where eigenvalues decrease as the number of factors increases, WSS also
decreases as K increases. A "significant reduction" in WSS at a particular K may suggest that
K is the most appropriate number of clusters, which in exploratory factor analysis implies that
the number of factors is K. The "significant reduction" can be identified using the Second-Order
Difference (SOD) approach. @seealso EFAkmeans

Value

An object of class EFAkmeans is a list containing the following components:

wss A vector containing all within-cluster sum of squares (WSS).

nfact.SOD The number of factors to be retained by the Second-Order Difference (SOD)
approach.

Examples

library(EFAfactors)
set.seed(123)

##Take the data.bfi dataset as an example.
data(data.bfi)

response <- as.matrix(data.bfi[, 1:25]) ## loading data
response <- na.omit(response) ## Remove samples with NA/missing values

Transform the scores of reverse-scored items to normal scoring
response[, c(1, 9, 10, 11, 12, 22, 25)] <- 6 - response[, c(1, 9, 10, 11, 12, 22, 25)] + 1

EFAscreet 23

Run EFAkmeans function with default parameters.

EFAkmeans.obj <- EFAkmeans(response)

plot(EFAkmeans.obj)

Get the heights.
wss <- EFAkmeans.obj$wss
print(wss)

Get the nfact retained by SOD
nfact.SOD <- EFAkmeans.obj$nfact.SOD
print(nfact.SOD)

EFAscreet Scree Plot

Description

This function generates a scree plot to display the eigenvalues of the correlation matrix computed
from the given response data. The scree plot helps in determining the number of factors to retain
in exploratory factor analysis by examining the point at which the eigenvalues start to level off,
indicating less variance explained by additional factors.

Usage

EFAscreet(
response,
fa = "pc",
nfact = 1,
cor.type = "pearson",
use = "pairwise.complete.obs"

)

Arguments

response A required N × I matrix or data.frame consisting of the responses of N individuals
to I items.

fa A string that determines the method used to obtain eigenvalues. If ’pc’, it repre-
sents Principal Component Analysis (PCA); if ’fa’, it represents Principal Axis
Factoring (a widely used Factor Analysis method; @seealso factor.analysis;
Auerswald & Moshagen, 2019). (Default = ’pc’)

24 EFAscreet

nfact A numeric value that specifies the number of factors to extract, only effective
when fa = 'fa'. (Default = 1)

cor.type A character string indicating which correlation coefficient (or covariance) is to
be computed. One of "pearson" (default), "kendall", or "spearman". @seealso
cor.

use An optional character string giving a method for computing covariances in the
presence of missing values. This must be one of the strings "everything", "all.obs",
"complete.obs", "na.or.complete", or "pairwise.complete.obs" (default). @seealso
cor.

Value

An object of class EFAscreet is a list containing the following components:

eigen.value A vector containing the empirical eigenvalues

See Also

plot.EFAscreet

Examples

library(EFAfactors)
set.seed(123)

##Take the data.bfi dataset as an example.
data(data.bfi)

response <- as.matrix(data.bfi[, 1:25]) ## loading data
response <- na.omit(response) ## Remove samples with NA/missing values

Transform the scores of reverse-scored items to normal scoring
response[, c(1, 9, 10, 11, 12, 22, 25)] <- 6 - response[, c(1, 9, 10, 11, 12, 22, 25)] + 1

Run EFAscreet function with default parameters.

EFAscreet.obj <- EFAscreet(response)

plot(EFAscreet.obj)

EFAsim.data 25

EFAsim.data Simulate Data that Conforms to the theory of Exploratory Factor Anal-
ysis.

Description

This function is used to simulate data that conforms to the theory of exploratory factor analysis,
with a high degree of customization for the variables involved.

Usage

EFAsim.data(
nfact,
vpf,
N = 500,
distri = "normal",
fc = "R",
pl = "R",
cl = "R",
low.vpf = 5,
up.vpf = 15,
a = NULL,
b = NULL,
vis = TRUE,
seed = NULL

)

Arguments

nfact A numeric value specifying the number of factors to simulate.

vpf A numeric or character value specifying the number of items under each fac-
tor. If a numeric value is provided, the numeric must be larger than 2, and the
number of items under each factor will be fixed to this value. If a character
value is provided, it must be one of ’S’, ’M’, ’L’, or ’R’. These represent ran-
dom selection of items under each factor from U(5, 10), U(5, 15), U(5, 20), or
U(low.vpfup.vpf), respectively.

N A numeric value specifying the number of examinees to simulate.

distri A character, either ’normal’ or ’beta’, indicating whether the simulated data
will follow a standard multivariate normal distribution or a multivariate beta
distribution.

fc A numeric or character value specifying the degree of correlation between fac-
tors. If a numeric value is provided, it must be within the range of 0 to 0.75,
and the correlation between all factors will be fixed at this value. If a character
value is provided, it must be ’R’, and the correlations between factors will be
randomly selected from U(0.0, 0.5).

26 EFAsim.data

pl A numeric or character value specifying the size of the primary factor loadings.
If a numeric value is provided, it must be within the range of 0 to 1, and all
primary factor loadings in the loading matrix will be fixed at this value. If a
character value is provided, it must be one of ’L’, ’M’, ’H’, or ’R’, represent-
ing pl U(0.35, 0.50), pl U(0.50, 0.65), pl U(0.65, 0.80), or pl U(0.35, 0.80),
respectively, consistent with the settings in Goretzko & Buhner (2020).

cl A numeric or character value specifying the size of cross-loadings. If a numeric
value is provided, it must be within the range of 0 to 0.5, and all cross-loadings
in the loading matrix will be fixed at this value. If a character value is pro-
vided, it must be one of ’L’, ’H’, ’None’, or ’R’, representing cl U(−0.1, 0.1),
cl U(−0.2,−0.1) ∪ U(0.1, 0.2), cl = 0, or cl U(−0.2, 0.2), respectively, con-
sistent with the settings in Auerswald & Moshagen (2019).

low.vpf A numeric value specifying the minimum number of items per factor, must be
larger than 2, effective only when vpf is ’R’. (default = 5)

up.vpf A numeric value specifying the maximum number of items per factor, effective
only when vpf is ’R’. (default = 15)

a A numeric or NULL specifying the ’a’ parameter of the beta distribution, effec-
tive only when distri = 'beta'. If a numeric value is provided, it will be used
as the ’a’ parameter of the beta distribution. If NULL, a random integer between
1 and 10 will be used. (default = NULL)

b A numeric or NULL specifying the ’b’ parameter of the beta distribution, effec-
tive only when distri = 'beta'. If a numeric value is provided, it will be used
as the ’b’ parameter of the beta distribution. If NULL, a random integer between
1 and 10 will be used. (default = NULL)

vis A logical value indicating whether to print process information. (default =
TRUE)

seed A numeric or NULL specifying the random seed. If a numeric value is provided,
it will be used as the seed. If NULL, the current timestamp will be used. (default
= NULL)

Details

A population correlation matrix was created for each data set based on the following decomposition:

Σ = ΛΦΛT +∆

where Λ is the loading matrix, Φ is the factor correlation matrix, and ∆ is a diagonal matrix, with
∆ = 1− diag(ΛΦΛT). The purpose of ∆ is to ensure that the diagonal elements of Σ are 1.

The response data for each subject was simulated using the following formula:

Xi = Li + ϵi, 1 ≤ i ≤ I

where Li follows a a standard normal distribution (distri = 'normal') or a beta distribution
(distri = 'beta'), representing the contribution of latent factors. And ϵi is the residual term
following a standard normal distribution (distri = 'normal') or a beta distribution (distri =
'beta') . Li and ϵi are uncorrelated, and ϵi and ϵj are also uncorrelated.

EFAvote 27

Value

An object of class EFAdata is a list containing the following components:

loadings A simulated loading matrix.

items A list containing all factors and the item indices under each factor.

cor.factors A simulated factor correlation matrix.

cor.items A simulated item correlation matrix.

response A simulated response data matrix.

References

Goretzko, D., & Buhner, M. (2020). One model to rule them all? Using machine learning algo-
rithms to determine the number of factors in exploratory factor analysis. Psychological Methods,
25(6), 776-786. https://doi.org/10.1037/met0000262.

Auerswald, M., & Moshagen, M. (2019). How to determine the number of factors to retain in
exploratory factor analysis: A comparison of extraction methods under realistic conditions. Psy-
chological methods, 24(4), 468-491. https://doi.org/https://doi.org/10.1037/met0000200

Examples

library(EFAfactors)

Run EFAsim.data function with default parameters.
data.obj <- EFAsim.data(nfact = 3, vpf = 5, N=500, distri="normal", fc="R", pl="R", cl="R",

low.vpf = 5, up.vpf = 15, a = NULL, b = NULL, vis = TRUE, seed = NULL)

head(data.obj$loadings)

EFAvote Voting Method for Number of Factors in EFA

Description

This function implements a voting method to determine the most appropriate number of factors
in exploratory factor analysis (EFA). The function accepts a vector of votes, where each value
represents the number of factors suggested by different EFA approaches. If there is a clear winner
(a single number of factors with the most votes), that number is returned. In case of a tie, the
function returns the first value among the tied results and outputs a message. The result is returned
as an object of class vote, which can be printed and plotted.

Usage

EFAvote(votes, vis = TRUE, plot = TRUE)

28 EKC

Arguments

votes A vector of integers, where each element corresponds to the number of factors
suggested by an EFA method.

vis Logical, whether to print the results of the voting. Defaults to TRUE.

plot Logical, whether to display a pie chart of the voting results. Defaults to TRUE.

Value

An object of class EFAvote, which is a list containing:

nfact The number of factors with the most votes. If there is a tie, the first one in the
order is returned.

votes The original vector of votes.

See Also

plot.EFAvote

Examples

library(EFAfactors)

nfacts <- c(5, 5, 5, 6, 6, 4)
names(nfacts) <- c("Hull", "CD", "PA", "EKC", "XGB", "DNN")

EFAvote.obj <- EFAvote(votes = nfacts)

Visualize the voting results
plot(EFAvote.obj)

EKC Empirical Kaiser Criterion

Description

This function will apply the Empirical Kaiser Criterion (Braeken & van Assen, 2017) method to
determine the number of factors. The method assumes that the distribution of eigenvalues asymp-
totically follows a Marcenko-Pastur distribution (Marcenko & Pastur, 1967). It calculates the refer-
ence eigenvalues based on this distribution and determines whether to retain a factor by comparing
the size of the empirical eigenvalues to the reference eigenvalues.

EKC 29

Usage

EKC(
response,
cor.type = "pearson",
use = "pairwise.complete.obs",
vis = TRUE,
plot = TRUE

)

Arguments

response A required N × I matrix or data.frame consisting of the responses of N individuals
to I items.

cor.type A character string indicating which correlation coefficient (or covariance) is to
be computed. One of "pearson" (default), "kendall", or "spearman". @seealso
cor.

use An optional character string giving a method for computing covariances in the
presence of missing values. This must be one of the strings "everything", "all.obs",
"complete.obs", "na.or.complete", or "pairwise.complete.obs" (default). @seealso
cor.

vis A Boolean variable that will print the factor retention results when set to TRUE,
and will not print when set to FALSE. (default = TRUE)

plot A Boolean variable that will print the EKC plot when set to TRUE, and will not
print it when set to FALSE. @seealso plot.EKC. (Default = TRUE)

Details

The Empirical Kaiser Criterion (EKC; Auerswald & Moshagen, 2019; Braeken & van Assen, 2017)
refines Kaiser-Guttman Criterion by accounting for random sample variations in eigenvalues. At
the population level, the EKC is equivalent to the original Kaiser-Guttman Criterion, extracting all
factors whose eigenvalues from the correlation matrix are greater than one. However, at the sample
level, it adjusts for the distribution of eigenvalues in normally distributed data. Under the null
model, the eigenvalue distribution follows the Marčenko-Pastur distribution (Marčenko & Pastur,
1967) asymptotically. The upper bound of this distribution serves as the reference eigenvalue for
the first eigenvalue λ, so

λ1,ref =

(
1 +

√
I

N

)2

, which is determined by N individuals and I items. For subsequent eigenvalues, adjustments are
made based on the variance explained by previous factors. The j-th reference eigenvalue is:

λj,ref = max

I −
∑j−1

i=0 λj

I − j + 1

[
1 +

√
I

N

]2
, 1

30 EKC

The j-th reference eigenvalue is reduced according to the magnitude of earlier eigenvalues since
higher previous values mean less unexplained variance remains. As in the original Kaiser-Guttman
Criterion, the reference eigenvalue cannot drop below one.

F =

I∑
i=1

I(λi > λi,ref)

Here, \(F \) represents the number of factors determined by the EKC, and I(·) is the indicator
function, which equals 1 when the condition is true, and 0 otherwise.

Value

An object of class EKC is a list containing the following components:

nfact The number of factors to be retained.

eigen.value A vector containing the empirical eigenvalues

eigen.ref A vector containing the reference eigenvalues

Author(s)

Haijiang Qin <Haijiang133@outlook.com>

References

Auerswald, M., & Moshagen, M. (2019). How to determine the number of factors to retain in
exploratory factor analysis: A comparison of extraction methods under realistic conditions. Psy-
chological methods, 24(4), 468-491. https://doi.org/10.1037/met0000200.

Braeken, J., & van Assen, M. A. L. M. (2017). An empirical Kaiser criterion. Psychological
methods, 22(3), 450-466. https://doi.org/10.1037/met0000074.

Marcˇenko, V. A., & Pastur, L. A. (1967). Distribution of eigenvalues for some sets of random ma-
trices. Mathematics of the USSR-Sbornik, 1, 457–483. http://dx.doi.org/10.1070/SM1967v001n04ABEH001994

Examples

library(EFAfactors)
set.seed(123)

##Take the data.bfi dataset as an example.
data(data.bfi)

response <- as.matrix(data.bfi[, 1:25]) ## loading data
response <- na.omit(response) ## Remove samples with NA/missing values

Transform the scores of reverse-scored items to normal scoring
response[, c(1, 9, 10, 11, 12, 22, 25)] <- 6 - response[, c(1, 9, 10, 11, 12, 22, 25)] + 1

Run EKC function with default parameters.

extractor.feature.DNN 31

EKC.obj <- EKC(response)

print(EKC.obj)

plot(EKC.obj)

Get the eigen.value, eigen.ref and nfact results.
eigen.value <- EKC.obj$eigen.value
eigen.ref <- EKC.obj$eigen.ref
nfact <- EKC.obj$nfact

print(eigen.value)
print(eigen.ref)
print(nfact)

extractor.feature.DNN Extracting features for the Pre-Trained Deep Neural Network (DNN)

Description

This function is used to extract the features required by the Pre-Trained Deep Neural Network
(DNN). @seealso DNN_predictor

Usage

extractor.feature.DNN(
response,
cor.type = "pearson",
use = "pairwise.complete.obs"

)

Arguments

response A required N × I matrix or data.frame consisting of the responses of N individuals
to I items.

cor.type A character string indicating which correlation coefficient (or covariance) is to
be computed. One of "pearson" (default), "kendall", or "spearman". @seealso
cor.

use An optional character string giving a method for computing covariances in the
presence of missing values. This must be one of the strings "everything", "all.obs",
"complete.obs", "na.or.complete", or "pairwise.complete.obs" (default). @seealso
cor.

32 extractor.feature.DNN

Details

A total of two types of features (6 kinds, making up 54 features in total) will be extracted, and they
are as follows: 1. Clustering-Based Features

(1) Hierarchical clustering is performed with correlation coefficients as dissimilarity. The top 9 tree
node heights are calculated, and all heights are divided by the maximum height. The heights
from the 2nd to 9th nodes are used as features. @seealso EFAhclust

(2) Hierarchical clustering with Euclidean distance as dissimilarity is performed. The top 9 tree
node heights are calculated, and all heights are divided by the maximum height. The heights
from the 2nd to 9th nodes are used as features. @seealso EFAhclust

(3) K-means clustering is applied with the number of clusters ranging from 1 to 9. The within-
cluster sum of squares (WSS) for clusters 2 to 9 are divided by the WSS for a single cluster.
@seealso EFAkmeans

These three features are based on clustering algorithms. The purpose of division is to normalize the
data. These clustering metrics often contain information unrelated to the number of factors, such as
the number of items and the number of respondents, which can be avoided by normalization. The
reason for using the 2nd to 9th data is that only the top F-1 data are needed to determine the number
of factors F. The first data point is fixed at 1 after the division operations, so it is excluded. This
approach helps in model simplification.

2. Traditional Exploratory Factor Analysis Features (Eigenvalues)

(4) The top 10 largest eigenvalues.

(5) The ratio of the top 10 largest eigenvalues to the corresponding reference eigenvalues from
Empirical Kaiser Criterion (EKC; Braeken & van Assen, 2017). @seealso EKC

(6) The cumulative variance proportion of the top 10 largest eigenvalues.

Only the top 10 elements are used to simplify the model.

Value

A matrix (1×54) containing all the features for determining the number of factors by the DNN.

Author(s)

Haijiang Qin <Haijiang133@outlook.com>

See Also

DNN_predictor

Examples

library(EFAfactors)
set.seed(123)

##Take the data.bfi dataset as an example.
data(data.bfi)

extractor.feature.FF 33

response <- as.matrix(data.bfi[, 1:25]) ## loading data
response <- na.omit(response) ## Remove samples with NA/missing values

Transform the scores of reverse-scored items to normal scoring
response[, c(1, 9, 10, 11, 12, 22, 25)] <- 6 - response[, c(1, 9, 10, 11, 12, 22, 25)] + 1

Run extractor.feature.DNN function with default parameters.

features <- extractor.feature.DNN(response)

print(features)

extractor.feature.FF Extracting features According to Goretzko & Buhner (2020)

Description

This function will extract 181 features from the data according to the method by Goretzko & Buhner
(2020).

Usage

extractor.feature.FF(
response,
cor.type = "pearson",
use = "pairwise.complete.obs"

)

Arguments

response A required N × I matrix or data.frame consisting of the responses of N individuals
to I items.

cor.type A character string indicating which correlation coefficient (or covariance) is to
be computed. One of "pearson" (default), "kendall", or "spearman". @seealso
cor.

use An optional character string giving a method for computing covariances in the
presence of missing values. This must be one of the strings "everything", "all.obs",
"complete.obs", "na.or.complete", or "pairwise.complete.obs" (default). @seealso
cor.

34 extractor.feature.FF

Details

The code for the extractor.feature.FF function is implemented based on the publicly available
code by Goretzko & Buhner (2020) (https://osf.io/mvrau/). The extracted features are completely
consistent with the 181 features described in the original text by Goretzko & Buhner (2020). These
features include:

• 1. - Number of examinees

• 2. - Number of items

• 3. - Number of eigenvalues greater than 1

• 4. - Proportion of variance explained by the 1st eigenvalue

• 5. - Proportion of variance explained by the 2nd eigenvalue

• 6. - Proportion of variance explained by the 3rd eigenvalue

• 7. - Number of eigenvalues greater than 0.7

• 8. - Standard deviation of the eigenvalues

• 9. - Number of eigenvalues accounting for 50

• 10. - Number of eigenvalues accounting for 75

• 11. - L1-norm of the correlation matrix

• 12. - Frobenius-norm of the correlation matrix

• 13. - Maximum-norm of the correlation matrix

• 14. - Average of the off-diagonal correlations

• 15. - Spectral-norm of the correlation matrix

• 16. - Number of correlations smaller or equal to 0.1

• 17. - Average of the initial communality estimates

• 18. - Determinant of the correlation matrix

• 19. - Measure of sampling adequacy (MSA after Kaiser, 1970)

• 20. - Gini coefficient (Gini, 1921) of the correlation matrix

• 21. - Kolm measure of inequality (Kolm, 1999) of the correlation matrix

• 22-101. - Eigenvalues from Principal Component Analysis (PCA), padded with -1000 if in-
sufficient

• 102-181. - Eigenvalues from Factor Analysis (FA), fixed at 1 factor, padded with -1000 if
insufficient

Value

A matrix (1×181) containing all the 181 features (Goretzko & Buhner, 2020).

References

Goretzko, D., & Buhner, M. (2020). One model to rule them all? Using machine learning algo-
rithms to determine the number of factors in exploratory factor analysis. Psychol Methods, 25(6),
776-786. https://doi.org/10.1037/met0000262.

factor.analysis 35

Examples

library(EFAfactors)
set.seed(123)

##Take the data.bfi dataset as an example.
data(data.bfi)

response <- as.matrix(data.bfi[, 1:25]) ## loading data
response <- na.omit(response) ## Remove samples with NA/missing values

Transform the scores of reverse-scored items to normal scoring
response[, c(1, 9, 10, 11, 12, 22, 25)] <- 6 - response[, c(1, 9, 10, 11, 12, 22, 25)] + 1

Run extractor.feature.FF function with default parameters.

features <- extractor.feature.FF(response)

print(features)

factor.analysis Factor Analysis by Principal Axis Factoring

Description

This function performs factor analysis using the Principal Axis Factoring (PAF) method. The pro-
cess involves extracting factors from an initial correlation matrix and iteratively refining the factor
estimates until convergence is achieved.

Usage

factor.analysis(
data,
nfact = 1,
iter.max = 1000,
criterion = 0.001,
cor.type = "pearson",
use = "pairwise.complete.obs"

)

Arguments

data A data.frame or matrix of response If the matrix is square, it is assumed to be
a correlation matrix. Otherwise, correlations (with pairwise deletion) will be
computed.

36 factor.analysis

nfact The number of factors to extract. (default = 1)

iter.max The maximum number of iterations for the factor extraction process. Default is
1000.

criterion The convergence criterion for the iterative process. The extraction process will
stop when the change in communalities is less than this value. Default is 0.001

cor.type A character string indicating which correlation coefficient (or covariance) is to
be computed. One of "pearson" (default), "kendall", or "spearman". @seealso
cor.

use An optional character string giving a method for computing covariances in the
presence of missing values. This must be one of the strings "everything", "all.obs",
"complete.obs", "na.or.complete", or "pairwise.complete.obs" (default). @seealso
cor.

Details

The Principal Axis Factoring (PAF) method involves the following steps:

Step 1. **Basic Principle**: The core principle of factor analysis using Principal Axis Factoring
(PAF) is expressed as:

R = ΛΛT +Φ

Rii = H2
i +Φii

where Λ is the matrix of factor loadings, and Φ is the diagonal matrix of unique variances. Here,
H2

i represents the portion of the i-th item’s variance explained by the factor model. H2 reflects the
amount of total variance in the variable accounted for by the factors in the model, indicating the
explanatory power of the factor model for that variable.

Step 2. **Factor Extraction by Iteratoin**:

- Initial Communalities: Compute the initial communalities as the squared multiple correlations:

H2
i(t) = Rii(t)

where H2
i(t) is the communality of i-th item in the t-th iteration, and Rii(t) is the i-th diagonal

element of the correlation matrix in the t-th iteration.

- Extract Factors and Update Communalities:

Λij =
√

λj × vij

H2
i(t+1) =

∑
j

Λ2
ij

Rii(t+1) = H2
i(t+1)

where Λij represents the j-th factor loading for the i-th item, λj is the j-th eigenvalue, H2
i(t+1) is

the communality of i-th item in the t+ 1-th iteration, and vij is the j-th value of the i-th item in the
eigen vector matrix v.

Step 3. **Iterative Refinement**:

- Calculate the Change between H2
t and H2

t+1:

∆H2
i = |H2

i(t+1) −H2
i(t)|

factor.analysis 37

where ∆H2
i represents the change in communalities between iterations t and t+ 1.

- Convergence Criterion: Continue iterating until the change in communalities is less than the spec-
ified criterion criterion: ∑

i

∆H2
i < criterion

The iterative process is implemented using C++ code to ensure computational speed.

Value

A list containing:

loadings The extracted factor loadings.

eigen.value The eigenvalues of the correlation matrix.

H2 A vector that contains the explanatory power of the factor model for all items.

Author(s)

Haijiang Qin <Haijiang133@outlook.com>

Examples

library(EFAfactors)
set.seed(123)

##Take the data.bfi dataset as an example.
data(data.bfi)

response <- as.matrix(data.bfi[, 1:25]) ## loading data
response <- na.omit(response) ## Remove samples with NA/missing values

Transform the scores of reverse-scored items to normal scoring
response[, c(1, 9, 10, 11, 12, 22, 25)] <- 6 - response[, c(1, 9, 10, 11, 12, 22, 25)] + 1

Run factor.analysis function to extract 5 factors

PAF.obj <- factor.analysis(response, nfact = 5)

Get the loadings, eigen.value and H2 results.
loadings <- PAF.obj$loadings
eigen.value <- PAF.obj$eigen.value
H2 <- PAF.obj$H2

print(loadings)
print(eigen.value)
print(H2)

38 FF

FF Factor Forest (FF) Powered by An Tuned XGBoost Model for Deter-
mining the Number of Factors

Description

This function will invoke a tuned XGBoost model (Goretzko & Buhner, 2020; Goretzko, 2022;
Goretzko & Ruscio, 2024) that can reliably perform the task of determining the number of factors.
The maximum number of factors that the network can discuss is 8.

Usage

FF(
response,
cor.type = "pearson",
use = "pairwise.complete.obs",
vis = TRUE,
plot = TRUE

)

Arguments

response A required N × I matrix or data.frame consisting of the responses of N individuals
to I items.

cor.type A character string indicating which correlation coefficient (or covariance) is to
be computed. One of "pearson" (default), "kendall", or "spearman". @seealso
cor.

use An optional character string giving a method for computing covariances in the
presence of missing values. This must be one of the strings "everything", "all.obs",
"complete.obs", "na.or.complete", or "pairwise.complete.obs" (default). @seealso
cor.

vis A Boolean variable that will print the factor retention results when set to TRUE,
and will not print when set to FALSE. (default = TRUE)

plot A Boolean variable that will print the FF plot when set to TRUE, and will not
print it when set to FALSE. @seealso plot.FF. (Default = TRUE)

Details

A total of 500,000 datasets were simulated to extract features for training the tuned XGBoost model
(Goretzko & Buhner, 2020; Goretzko, 2022). Each dataset was generated according to the following
specifications:

• Factor number: F ~ U[1,8]

• Sample size: N ~ U[200,1000]

FF 39

• Number of variables per factor: vpf ~ U[3,10]

• Factor correlation: fc ~ U[0.0,0.4]

• Primary loadings: pl ~ U[0.35,0.80]

• Cross-loadings: cl ~ U[0.0,0.2]

A population correlation matrix was created for each data set based on the following decomposition:

Σ = ΛΦΛT +∆

where Λ is the loading matrix, Φ is the factor correlation matrix, and ∆ is a diagonal matrix, with
∆ = 1− diag(ΛΦΛT). The purpose of ∆ is to ensure that the diagonal elements of Σ are 1.

The response data for each subject were simulated using the following formula:

Xi = Li + ϵi, 1 ≤ i ≤ I

where Li follows a normal distribution N(0, σ), representing the contribution of latent factors, and
ϵi is the residual term following a standard normal distribution. Li and ϵi are uncorrelated, and ϵi
and ϵj are also uncorrelated.

For each simulated dataset, a total of 184 features are extracted and compiled into a feature vector.
These features include:

• 1. - Number of examinees

• 2. - Number of items

• 3. - Number of eigenvalues greater than 1

• 4. - Proportion of variance explained by the 1st eigenvalue

• 5. - Proportion of variance explained by the 2nd eigenvalue

• 6. - Proportion of variance explained by the 3rd eigenvalue

• 7. - Number of eigenvalues greater than 0.7

• 8. - Standard deviation of the eigenvalues

• 9. - Number of eigenvalues accounting for 50

• 10. - Number of eigenvalues accounting for 75

• 11. - L1-norm of the correlation matrix

• 12. - Frobenius-norm of the correlation matrix

• 13. - Maximum-norm of the correlation matrix

• 14. - Average of the off-diagonal correlations

• 15. - Spectral-norm of the correlation matrix

• 16. - Number of correlations smaller or equal to 0.1

• 17. - Average of the initial communality estimates

• 18. - Determinant of the correlation matrix

• 19. - Measure of sampling adequacy (MSA after Kaiser, 1970)

• 20. - Gini coefficient (Gini, 1921) of the correlation matrix

• 21. - Kolm measure of inequality (Kolm, 1999) of the correlation matrix

40 FF

• 21. - Number of factors retained by the PA method @seealso PA

• 23. - Number of factors retained by the EKC method @seealso EKC

• 24. - Number of factors retained by the CD method @seealso CD

• 25-104. - Eigenvalues from Principal Component Analysis (PCA), padded with -1000 if in-
sufficient

• 105-184. - Eigenvalues from Factor Analysis (FA), fixed at 1 factor, padded with -1000 if
insufficient

The code for the FF function is implemented based on the publicly available code by Goretzko &
Buhner (2020) (https://osf.io/mvrau/). The Tuned XGBoost Model is also obtained from this site.
However, to meet the requirements for a streamlined R package, we can only save the core com-
ponents of the Tuned XGBoost Model. Although these non-core parts do not affect performance,
they include a lot of information about the model itself, such as the number of features, subsets
of samples, and data from the training process, among others. For the complete Tuned XGBoost
Model, please download it from https://osf.io/mvrau/.

Value

An object of class FF is a list containing the following components:

nfact The number of factors to be retained.

probability A matrix containing the probabilities for factor numbers ranging from 1 to 8
(1x8), where the number in the f-th column represents the probability that the
number of factors for the response is f.

features A matrix (1×184) containing all the features for determining the number of fac-
tors by the tuned XGBoost Model.

References

Goretzko, D., & Buhner, M. (2020). One model to rule them all? Using machine learning algo-
rithms to determine the number of factors in exploratory factor analysis. Psychol Methods, 25(6),
776-786. https://doi.org/10.1037/met0000262.

Goretzko, D. (2022). Factor Retention in Exploratory Factor Analysis With Missing Data. Educ
Psychol Meas, 82(3), 444-464. https://doi.org/10.1177/00131644211022031.

Examples

library(EFAfactors)
set.seed(123)

##Take the data.bfi dataset as an example.
data(data.bfi)

response <- as.matrix(data.bfi[, 1:25]) ## loading data
response <- na.omit(response) ## Remove samples with NA/missing values

Transform the scores of reverse-scored items to normal scoring
response[, c(1, 9, 10, 11, 12, 22, 25)] <- 6 - response[, c(1, 9, 10, 11, 12, 22, 25)] + 1

GenData 41

Run FF function with default parameters.

FF.obj <- FF(response)

print(FF.obj)

plot(FF.obj)

Get the probability and nfact results.
probability <- FF.obj$probability
nfact <- FF.obj$nfact

print(probability)
print(nfact)

GenData Simulating Data Following John Ruscio’s RGenData

Description

This function simulates data with nfact factors based on empirical data. It represents the simulation
data part of the CD function and the CDF function. This function improves upon GenDataPopula-
tion by utilizing C++ code to achieve faster data simulation.

Usage

GenData(
response,
nfact = 1,
N.pop = 10000,
Max.Trials = 5,
lr = 1,
cor.type = "pearson",
use = "pairwise.complete.obs",
isSort = FALSE

)

Arguments

response A required N × I matrix or data.frame consisting of the responses of N individuals
to I items.

nfact The number of factors to extract in factor analysis. (default = 1)

42 GenData

N.pop Size of finite populations for simulating. (default = 10,000)

Max.Trials The maximum number of consecutive trials without obtaining a lower RMSR.
(default = 5)

lr The learning rate for updating the correlation matrix during iteration. (default =
1)

cor.type A character string indicating which correlation coefficient (or covariance) is to
be computed. One of "pearson" (default), "kendall", or "spearman". @seealso
cor.

use An optional character string specifying a method for computing covariances
in the presence of missing values. This must be one of the strings "every-
thing", "all.obs", "complete.obs", "na.or.complete", or "pairwise.complete.obs"
(default). @seealso cor.

isSort Logical, determines whether the simulated data needs to be sorted in descending
order. (default = FALSE)

Details

The core idea of GenData is to start with the empirical data’s correlation matrix and iteratively
approach data with nfact factors. Any value in the simulated data must come from the empirical
data. The specific steps of GenData are as follows:

(1) Use the empirical data (Yemp) correlation matrix as the target, Rtarg.

(2) Simulate scores for N.pop examinees on nfact factors using a multivariate standard normal
distribution:

S(N.pop×nfact) ∼ N (0, 1)

Simulate noise for N.pop examinees on I items:

U(N.pop×I) ∼ N (0, 1)

(3) Initialize Rtemp = Rtarg, and set the minimum Root Mean Square Residual RMSRmin =
Inf. Start the iteration process.

(4) Extract nfact factors from Rtemp, and obtain the factor loadings matrix Lshar. Ensure that the
first element of Lshare is positive to standardize the direction.

(5) Calculate the unique factor matrix Luniq,(I×1):

Luniq,i =

√√√√1−
nfact∑
j=1

L2
share,i,j

(6) Calculate the simulated data Ysim:

Ysim,i,j = SiL
T
shar,j + Ui,jLuniq,i

(7) Compute the correlation matrix of the simulated data, Rsimu.

(8) Calculate the residual correlation matrix Rresi between the target matrix Rtarg and the simu-
lated data’s correlation matrix Rsimu:

Rresi = Rtarg −Rsimu

GenData 43

(9) Calculate the current RMSR:

RMSRcur =

√∑
i<j R

2
resi,i,j

0.5× (I2 − I)

(10) If RMSRcur < RMSRmin, update Rtemp = Rtemp+lr×Rresi, RMSRmin = RMSRcur,
set Rmin,resi = Rresi, and reset the count of consecutive trials without improvement cou =
0. If RMSRcur ≥ RMSRmin, update Rtemp = Rtemp + 0.5× cou× lr ×Rmin,resi and
increment cou = cou+ 1.

(11) Repeat steps (4) through (10) until cou ≥ Max.Trials.

Of course C++ code is used to speed up.

Value

A N.pop * I matrix containing the simulated data.

References

Ruscio, J., & Roche, B. (2012). Determining the number of factors to retain in an exploratory
factor analysis using comparison data of known factorial structure. Psychological Assessment, 24,
282–292. http://dx.doi.org/10.1037/a0025697.

Examples

library(EFAfactors)
set.seed(123)

##Take the data.bfi dataset as an example.
data(data.bfi)

response <- as.matrix(data.bfi[, 1:25]) ## loading data
response <- na.omit(response) ## Remove samples with NA/missing values

Transform the scores of reverse-scored items to normal scoring
response[, c(1, 9, 10, 11, 12, 22, 25)] <- 6 - response[, c(1, 9, 10, 11, 12, 22, 25)] + 1

data.simulated <- GenData(response, nfact = 1, N.pop = 10000)
head(data.simulated)

44 Hull

Hull the Hull Approach

Description

The Hull method is a heuristic approach used to determine the optimal number of common factors
in factor analysis. It evaluates models with increasing numbers of factors and uses goodness-of-fit
indices relative to the model degrees of freedom to select the best-fitting model. The method is
known for its effectiveness and reliability compared to other methods like the scree plot.

Usage

Hull(
response,
fa = "pc",
nfact = 1,
cor.type = "pearson",
use = "pairwise.complete.obs",
vis = TRUE,
plot = TRUE

)

Arguments

response A required N × I matrix or data.frame consisting of the responses of N individuals
to × I items.

fa A string that determines the method used to obtain eigenvalues in PA. If ’pc’,
it represents Principal Component Analysis (PCA); if ’fa’, it represents Principal
Axis Factoring (a widely used Factor Analysis method; @seealso factor.analysis;
Auerswald & Moshagen, 2019). (Default = ’pc’)

nfact A numeric value that specifies the number of factors to extract, only effective
when fa = 'fa'. (Default = 1)

cor.type A character string indicating which correlation coefficient (or covariance) is to
be computed. One of "pearson" (default), "kendall", or "spearman". @seealso
cor.

use an optional character string giving a method for computing covariances in the
presence of missing values. This must be one of the strings "everything", "all.obs",
"complete.obs", "na.or.complete", or "pairwise.complete.obs" (default). @seealso
cor.

vis A Boolean variable that will print the factor retention results when set to TRUE,
and will not print when set to FALSE. (default = TRUE)

plot A Boolean variable that will print the CD plot when set to TRUE, and will not
print it when set to FALSE. @seealso plot.Hull. (Default = TRUE)

Hull 45

Details

The Hull method (Lorenzo-Seva & Timmerman, 2011) is a heuristic approach used to determ ine
the number of common factors in factor analysis. This method is similar to non-graphical variants
of Cattell’s scree plot but relies on goodness-of-fit indices relative to the model degrees of freedom.
The Hull method finds the optimal number of factors by following these steps:

1. Calculate the goodness-of-fit index (CFI) and model degrees of freedom (df; Lorenzo-Seva &
Timmerman, 2011; df = IF − 0.5F ∗ (F − 1), I is the number of items, and F is the number
of factors) for models with an increasing number of factors, up to a prespecified maximum,
which is equal to the

2. nfact of PA method. the GOF will always be Comparative Fit Index (CFI), for it performs
best under various conditions than other GOF (Auerswald & Moshagen, 2019; Lorenzo-Seva
& Timmerman, 2011), such as RMSEA and SRMR. @seealso EFAindex

3. Identify and exclude solutions that are less complex (with fewer factors) but have a higher fit
index.

4. Further exclude solutions if their fit indices fall below the line connecting adjacent viable
solutions.

5. Determine the number of factors where the ratio of the difference in goodness-of-fit indices to
the difference in degrees of freedom is maximized.

Value

A list with the following components:

nfact The optimal number of factors according to the Hull method.

CFI A numeric vector of CFI values for each number of factors considered.

df A numeric vector of model degrees of freedom for each number of factors con-
sidered.

Hull.CFI A numeric vector of CFI values with points below the convex Hull curve re-
moved.

Hull.df A numeric vector of model degrees of freedom with points below the convex
Hull curve removed.

Author(s)

Haijiang Qin <Haijiang133@outlook.com>

References

Auerswald, M., & Moshagen, M. (2019). How to determine the number of factors to retain in
exploratory factor analysis: A comparison of extraction methods under realistic conditions. Psy-
chological methods, 24(4), 468-491. https://doi.org/https://doi.org/10.1037/met0000200.

Lorenzo-Seva, U., Timmerman, M. E., & Kiers, H. A. L. (2011). The Hull Method for Selecting the
Number of Common Factors. Multivariate Behavioral Research, 46(2), 340-364. https://doi.org/10.1080/00273171.2011.564527.

46 KGC

Examples

library(EFAfactors)
set.seed(123)

##Take the data.bfi dataset as an example.
data(data.bfi)

response <- as.matrix(data.bfi[, 1:25]) ## loading data
response <- na.omit(response) ## Remove samples with NA/missing values

Transform the scores of reverse-scored items to normal scoring
response[, c(1, 9, 10, 11, 12, 22, 25)] <- 6 - response[, c(1, 9, 10, 11, 12, 22, 25)] + 1

Run EKC function with default parameters.

Hull.obj <- Hull(response)

print(Hull.obj)

plot(Hull.obj)

Get the CFI, df and nfact results.
CFI <- Hull.obj$CFI
df <- Hull.obj$df
nfact <- Hull.obj$nfact

print(CFI)
print(df)
print(nfact)

KGC Kaiser-Guttman Criterion

Description

This function implements the Kaiser-Guttman criterion (Guttman, 1954; Kaiser, 1960) for deter-
mining the number of factors to retain in factor analysis. It is based on the eigenvalues of the corre-
lation matrix of the responses. According to the criterion, factors are retained if their corresponding
eigenvalues are greater than 1.

Usage

KGC(
response,

KGC 47

fa = "pc",
nfact = 1,
cor.type = "pearson",
use = "pairwise.complete.obs",
vis = TRUE,
plot = TRUE

)

Arguments

response A required N × I matrix or data.frame consisting of the responses of N individuals
to I items.

fa A string that determines the method used to obtain eigenvalues. If ’pc’, it repre-
sents Principal Component Analysis (PCA); if ’fa’, it represents Principal Axis
Factoring (a widely used Factor Analysis method; @seealso factor.analysis;
Auerswald & Moshagen, 2019). (Default = ’pc’)

nfact A numeric value that specifies the number of factors to extract, only effective
when fa = 'fa'. (Default = 1)

cor.type A character string indicating which correlation coefficient (or covariance) is to
be computed. One of "pearson" (default), "kendall", or "spearman". @seealso
cor.

use An optional character string giving a method for computing covariances in the
presence of missing values. This must be one of the strings "everything", "all.obs",
"complete.obs", "na.or.complete", or "pairwise.complete.obs" (default). @seealso
cor.

vis A Boolean variable that will print the factor retention results when set to TRUE,
and will not print when set to FALSE. (default = TRUE)

plot A Boolean variable that will print the KGC plot when set to TRUE, and will not
print it when set to FALSE. @seealso plot.KGC. (Default = TRUE)

Value

An object of class KGC is a list containing the following components:

nfact The number of factors to be retained.

eigen.value A vector containing the empirical eigenvalues

References

Guttman, L. (1954). Some necessary conditions for common-factor analysis. Psychometrika, 19,
149–161. http://dx.doi.org/10.1007/BF02289162.

Kaiser, H. F. (1960). The application of electronic computers to factor analysis. Educational and
Psychological Measurement, 20, 141–151. http://dx.doi.org/10.1177/001316446002000116.

48 load_DNN

Examples

library(EFAfactors)
set.seed(123)

##Take the data.bfi dataset as an example.
data(data.bfi)

response <- as.matrix(data.bfi[, 1:25]) ## loading data
response <- na.omit(response) ## Remove samples with NA/missing values

Transform the scores of reverse-scored items to normal scoring
response[, c(1, 9, 10, 11, 12, 22, 25)] <- 6 - response[, c(1, 9, 10, 11, 12, 22, 25)] + 1

Run KGC function with default parameters.

KGC.obj <- KGC(response)

print(KGC.obj)

plot(KGC.obj)

Get the eigen.value, eigen.ref and nfact results.
eigen.value <- KGC.obj$eigen.value
nfact <- KGC.obj$nfact

print(eigen.value)
print(nfact)

load_DNN Load the Trained Deep Neural Network (DNN)

Description

Loads the Pre-Trained Deep Neural Network (DNN) from the DNN.onnx. The function uses the
reticulate package to import the onnxruntime Python library and create an inference session for
the model.

Usage

load_DNN()

Value

An ONNX runtime inference session object for the DNN model.

load_scaler 49

Note

Note that Python and the libraries numpy and onnxruntime are required.

First, please ensure that Python is installed on your computer and that Python is included in the
system’s PATH environment variable. If not, please download and install it from the official website
(https://www.python.org/).

If you encounter an error when running this function stating that the numpy and onnxruntime mod-
ules are missing:

Error in py_module_import(module, convert = convert) :

ModuleNotFoundError: No module named 'numpy'

or

Error in py_module_import(module, convert = convert) :

ModuleNotFoundError: No module named 'onnxruntime'

this means that the numpy or onnxruntime library is missing from your Python environment. If
you are using Windows or macOS, please run the command pip install numpy or pip install
onnxruntime in Command Prompt or Windows PowerShell (Windows), or Terminal (macOS). If
you are using Linux, please ensure that pip is installed and use the command pip install numpy
or pip install onnxruntime to install the missing libraries.

See Also

DNN_predictor

load_scaler Load the Scaler for the Pre-Trained Deep Neural Network (DNN)

Description

Loads the scaler object within the EFAfactors package. This object is a list containing a mean
vector and a standard deviation vector, which were computed from the 10,000,000 datasets data.datasets
used for training the Pre-Trained Deep Neural Network (DNN). It serves as a tool for normalizing
features in DNN_predictor.

Usage

load_scaler()

Value

scaler objective.

See Also

DNN_predictor, normalizor, data.datasets, data.scaler

50 model.xgb

Examples

library(EFAfactors)

scaler <- load_scaler()
print(scaler)

load_xgb Load the Tuned XGBoost Model

Description

Loads the tuned XGBoost model object within the EFAfactors package into the global environment
and retrieves it for use. Only the core model is retained to reduce the size.

Usage

load_xgb()

Value

The tuned XGBoost model object

Examples

library(EFAfactors)

xgb_model <- load_xgb()
print(xgb_model)

model.xgb the Tuned XGBoost Model for Determining the Number of Facotrs

Description

the Tuned XGBoost Model for Determining the Number of Facotrs

Format

An object of class TuneModel is the Tuned XGBoost Model for Determining the Number of Facotrs

See Also

FF, load_xgb

normalizor 51

Examples

data(model.xgb)
print(model.xgb)

model.xgb <- load_xgb()
print(model.xgb)

normalizor Feature Normalization

Description

This function normalizes a matrix of features using precomputed means and standard deviations.
The function automatically runs load_scaler to read the standard deviations and means of the fea-
tures, which are organized into a list object named scaler. These means and standard deviations
are computed from the 10,000,000 datasets data.datasets for training the Pre-Trained Deep Neu-
ral Network (DNN).

Usage

normalizor(features)

Arguments

features A numeric matrix where each row represents an observation and each column
represents a feature.

Details

The function applies z-score normalization to each element in the features matrix. It uses the
scaler object, which is expected to contain precomputed means and standard deviations for each
feature. The normalized value for each element is computed as:

z =
x− µ

σ

where x is the original value, µ is the mean, and σ is the standard deviation.

Value

A matrix of the same dimensions as features, where each feature has been normalized.

See Also

DNN_predictor, load_scaler, data.datasets, data.scaler

52 PA

PA Parallel Analysis

Description

This function performs Parallel Analysis (PA), which is a method used to determine the number
of factors to retain in exploratory factor analysis. It compares the empirical eigenvalues with those
obtained from simulated random data to identify the point where the observed eigenvalues are larger
than those expected by chance. The number of empirical eigenvalues that are greater than the
corresponding reference eigenvalues is the number of factors recommended to be retained by the
PA method.

Usage

PA(
response,
fa = "pc",
n.iter = 100,
type = "quant",
nfact = 1,
quant = 0.95,
cor.type = "pearson",
use = "pairwise.complete.obs",
vis = TRUE,
plot = TRUE

)

Arguments

response A required N × I matrix or data.frame consisting of the responses of N individuals
to I items.

fa A string that determines the method used to obtain eigenvalues in PA. If ’pc’,
it represents Principal Component Analysis (PCA); if ’fa’, it represents Principal
Axis Factoring (a widely used Factor Analysis method; @seealso factor.analysis;
Auerswald & Moshagen, 2019). (Default = ’pc’)

n.iter A numeric value that determines the number of simulations for the random data.
(Default = 100)

type A string that determines the method used to calculate the reference eigenvalues
from the simulated data. If ’mean’, the reference eigenvalue (eigen.ref) is
the mean of the simulated eigenvalues (eigen.sim); if ’quant’, the reference
eigenvalue is the quant percentile of eigen.sim. (Default = ’quant’)

nfact A numeric value that specifies the number of factors to extract, only effective
when fa = 'fa'. (Default = 1)

quant A numeric value between 0 and 1, representing the quantile to be used for the
reference eigenvalues calculation when type = 'quant'. (Default = 0.95)

PA 53

cor.type A character string indicating the correlation coefficient (or covariance) to be
computed. One of "pearson" (default), "kendall", or "spearman". @seealso cor.

use An optional character string specifying the method for computing covariances
when there are missing values. This must be one of "everything", "all.obs",
"complete.obs", "na.or.complete", or "pairwise.complete.obs" (default). @seealso
cor.

vis A Boolean that determines whether to print the factor retention results. Set to
TRUE to print, or FALSE to suppress output. (Default = TRUE)

plot A Boolean that determines whether to display the PA plot. Set to TRUE to show
the plot, or FALSE to suppress it. @seealso plot.PA. (Default = TRUE)

Details

This function performs Parallel Analysis (PA; Horn, 1965; Auerswald & Moshagen, 2019) to de-
termine the number of factors to retain. PA is a widely used method and is considered the "gold
standard" for factor retention due to its high accuracy and stability, although it may underperform
compared to methods like CD or EKC under certain conditions. The core idea of PA is to simulate
random data multiple times, for example, 100 times, and compute the eigenvalues from each simu-
lation. These simulated eigenvalues are then processed using either the mean or a quantile method
to obtain the reference eigenvalues, such as the i-th reference eigenvalue λi,ref . The relationship
between the i-th empirical eigenvalue λi and λi,ref indicates whether the i-th factor should be re-
tained. If λi > λi,ref , it suggests that the explanatory power of the i-th factor from the original
data is stronger than that of the i-th factor from the random data, and therefore the factor should be
retained. Conversely, if λi <= λi,ref , it indicates that the explanatory power of the i-th factor from
the original data is weaker or equal to that of the random data, making it indistinguishable from
noise, and thus the factor should not be retained. So,

F =

I∑
i=1

I(λi > λi,ref)

Here, \(F \) represents the number of factors determined by the EKC, and I(·) is the indicator
function, which equals 1 when the condition is true, and 0 otherwise.

Auerswald & Moshagen (2019) found that the most accurate results for PA were obtained when
using PCA to extract eigenvalues and using the 95th percentile of the simulated eigenvalues to
calculate the reference eigenvalues. Therefore, the recommended settings for this function are fa =
'pc', type = 'quant', and quant = 0.95.

Value

An object of class PA, which is a list containing the following components:

nfact The number of factors to retain.

fa Indicates the method used to obtain eigenvalues in PA. ’pc’ represents Principal
Component Analysis, and ’fa’ represents Principal Axis Factoring.

type Indicates the method used to calculate eigen.ref. If ’mean’, eigen.ref is the
mean of eigen.sim; if ’quant’, eigen.ref is the quant percentile of eigen.sim.

eigen.value A vector containing the empirical eigenvalues.

54 PA

eigen.ref A vector containing the reference eigenvalues, which depend on type.

eigen.sim A matrix containing the simulated eigenvalues for all iterations.

Author(s)

Haijiang Qin <Haijiang133@outlook.com>

References

Auerswald, M., & Moshagen, M. (2019). How to determine the number of factors to retain in
exploratory factor analysis: A comparison of extraction methods under realistic conditions. Psy-
chological methods, 24(4), 468-491. https://doi.org/10.1037/met0000200.

Horn, J. L. (1965). A rationale and test for the number of factors in factor analysis. Psychometrika,
30, 179–185. http://dx.doi.org/10.1007/BF02289447.

Examples

library(EFAfactors)
set.seed(123)

##Take the data.bfi dataset as an example.
data(data.bfi)

response <- as.matrix(data.bfi[, 1:25]) ## loading data
response <- na.omit(response) ## Remove samples with NA/missing values

Transform the scores of reverse-scored items to normal scoring
response[, c(1, 9, 10, 11, 12, 22, 25)] <- 6 - response[, c(1, 9, 10, 11, 12, 22, 25)] + 1

Run PA function with default parameters.

PA.obj <- PA(response)

print(PA.obj)

plot(PA.obj)

Get the eigen.value, eigen.ref and nfact results.
eigen.value <- PA.obj$eigen.value
eigen.ref <- PA.obj$eigen.ref
nfact <- PA.obj$nfact

print(eigen.value)
print(eigen.ref)
print(nfact)

plot.CD 55

plot.CD Plot Comparison Data for Factor Analysis

Description

This function generates a Comparison Data plot to visualize the Root Mean Square Error (RMSE)
of eigenvalues for various numbers of factors. This plot helps in evaluating the fit of different factor
models and identifying the optimal number of factors based on RMSE values.

Usage

S3 method for class 'CD'
plot(x, ...)

Arguments

x An object of class CD, representing the results to be plotted.

... Additional arguments to be passed to the plotting function.

Value

None. This function is used for side effects (plotting).

See Also

CD

Examples

library(EFAfactors)
set.seed(123)

##Take the data.bfi dataset as an example.
data(data.bfi)

response <- as.matrix(data.bfi[, 1:25]) ## loading data
response <- na.omit(response) ## Remove samples with NA/missing values

Transform the scores of reverse-scored items to normal scoring
response[, c(1, 9, 10, 11, 12, 22, 25)] <- 6 - response[, c(1, 9, 10, 11, 12, 22, 25)] + 1

CD.obj <- CD(response)

CD plot
plot(CD.obj)

56 plot.CDF

plot.CDF Plot Comparison Data Forest (CDF) Classification Probability Distri-
bution

Description

This function generates a bar plot of the classification probabilities predicted by the Comparison
Data Forest for determining the number of factors. The plot displays the probability distribution
across different numbers of factors, with each bar representing the probability for a specific number
of factors.

Usage

S3 method for class 'CDF'
plot(x, ...)

Arguments

x An object of class CDF, representing the results to be plotted.

... Additional arguments to be passed to the plotting function.

Value

None. This function is used for side effects (plotting).

See Also

CDF

Examples

library(EFAfactors)
set.seed(123)

Take the data.bfi dataset as an example.
data(data.bfi)

response <- as.matrix(data.bfi[, 1:25]) ## Load data
response <- na.omit(response) ## Remove samples with NA/missing values

Transform the scores of reverse-scored items to normal scoring
response[, c(1, 9, 10, 11, 12, 22, 25)] <- 6 - response[, c(1, 9, 10, 11, 12, 22, 25)] + 1

CDF.obj <- CDF(response)

Plot the CDF probabilities
plot(CDF.obj)

plot.DNN_predictor 57

plot.DNN_predictor Plot DNN Predictor Classification Probability Distribution

Description

This function generates a bar plot of the classification probabilities predicted by the pre-trained deep
neural network for determining the number of factors. The plot displays the probability distribution
across different numbers of factors, with each bar representing the probability for a specific number
of factors. The maximum number of factors that the network can evaluate is 10. The function also
annotates each bar with its probability value.

Usage

S3 method for class 'DNN_predictor'
plot(x, ...)

Arguments

x An object of class DNN_predictor, representing the results to be plotted.

... Additional arguments to be passed to the plotting function.

Value

None. This function is used for side effects (plotting).

See Also

DNN_predictor

plot.EFAhclust Plot Hierarchical Cluster Analysis Dendrogram

Description

This function generates a dendrogram from hierarchical cluster analysis results. The hierarchical
clustering method merges the two nodes with the smallest dissimilarity at each step, forming a new
node until all nodes are combined into a single hierarchical structure. The resulting dendrogram
represents the hierarchical relationships between items, where items with high correlation are con-
nected by shorter lines, and items with low correlation are connected by longer lines. The height of
the tree nodes indicates the dissimilarity between nodes: a greater height reflects a larger difference.
Researchers can use this representation to determine if two nodes belong to the same cluster, which
in exploratory factor analysis, helps identify whether items belong to the same latent factor.

58 plot.EFAkmeans

Usage

S3 method for class 'EFAhclust'
plot(x, ...)

Arguments

x An object of class EFAhclust, representing the results to be plotted.

... Additional arguments to be passed to the plotting function.

Value

None. This function is used for side effects (plotting).

See Also

EFAhclust

Examples

library(EFAfactors)
set.seed(123)

Take the data.bfi dataset as an example.
data(data.bfi)

response <- as.matrix(data.bfi[, 1:25]) ## Load data
response <- na.omit(response) ## Remove samples with NA/missing values

Transform the scores of reverse-scored items to normal scoring
response[, c(1, 9, 10, 11, 12, 22, 25)] <- 6 - response[, c(1, 9, 10, 11, 12, 22, 25)] + 1

EFAhclust.obj <- EFAhclust(response)

Plot the hierarchical clustering dendrogram
plot(EFAhclust.obj)

plot.EFAkmeans Plot EFA K-means Clustering Results

Description

This function creates a plot to visualize the Within-cluster Sum of Squares (WSS) for different
numbers of clusters (K) in the context of exploratory factor analysis. The plot helps identify the
most appropriate number of factors by showing how WSS decreases as the number of factors (or
clusters) increases.

plot.EFAscreet 59

Usage

S3 method for class 'EFAkmeans'
plot(x, ...)

Arguments

x An object of class EFAkmeans, representing the results to be plotted.

... Additional arguments to be passed to the plotting function.

Value

None. This function is used for side effects (plotting).

See Also

EFAkmeans

Examples

library(EFAfactors)
set.seed(123)

Take the data.bfi dataset as an example.
data(data.bfi)

response <- as.matrix(data.bfi[, 1:25]) ## Load data
response <- na.omit(response) ## Remove samples with NA/missing values

Transform the scores of reverse-scored items to normal scoring
response[, c(1, 9, 10, 11, 12, 22, 25)] <- 6 - response[, c(1, 9, 10, 11, 12, 22, 25)] + 1

EFAkmeans.obj <- EFAkmeans(response)

Plot the EFA K-means clustering results
plot(EFAkmeans.obj)

plot.EFAscreet Plots the Scree Plot

Description

Plots the Scree Plot from an object of class EFAscreet. The scree plot visualizes the eigenvalues
of the correlation matrix in descending order and helps in identifying the optimal number of factors
by showing where the eigenvalues start to plateau.

60 plot.EFAscreet

Usage

S3 method for class 'EFAscreet'
plot(x, ...)

Arguments

x An object of class EFAscreet, which contains the eigenvalues from the factor
analysis.

... Additional arguments to be passed to the plot function (not used).

Details

The scree plot is a graphical tool used in exploratory factor analysis. It shows the eigenvalues
corresponding to the factors. The number of factors is typically determined by finding the point
where the plot levels off ("elbow" point).

Value

A scree plot displaying the eigenvalues against the number of factors.

Examples

library(EFAfactors)
set.seed(123)

##Take the data.bfi dataset as an example.
data(data.bfi)

response <- as.matrix(data.bfi[, 1:25]) ## loading data
response <- na.omit(response) ## Remove samples with NA/missing values

Transform the scores of reverse-scored items to normal scoring
response[, c(1, 9, 10, 11, 12, 22, 25)] <- 6 - response[, c(1, 9, 10, 11, 12, 22, 25)] + 1

Run EFAscreet function with default parameters.

EFAscreet.obj <- EFAscreet(response)

plot(EFAscreet.obj)

plot.EFAvote 61

plot.EFAvote Plot Voting Results for Number of Factors

Description

This function creates a pie chart to visualize the results of a voting method used to determine the
number of factors in exploratory factor analysis (EFA). The voting method combines the results
from multiple EFA techniques, and the pie chart displays the proportions of votes each number of
factors received. Each slice of the pie represents the percentage of votes for a specific number of
factors, providing a clear visual representation of the most commonly suggested number of factors.

Usage

S3 method for class 'EFAvote'
plot(x, ...)

Arguments

x An object of class EFAvote, representing the results to be plotted.

... Additional arguments to be passed to the plotting function.

Value

None. This function is used for side effects (plotting).

See Also

EFAvote

Examples

library(EFAfactors)

nfacts <- c(5, 5, 5, 6, 6, 4)
names(nfacts) <- c("Hull", "CD", "PA", "EKC", "XGB","DNN")

EFAvote.obj <- EFAvote(votes = nfacts)
plot(EFAvote.obj)

62 plot.EKC

plot.EKC Plot Empirical Kaiser Criterion (EKC) Plot

Description

This function generates an Empirical Kaiser Criterion (EKC) plot to visualize the eigenvalues of the
actual data. The EKC method helps in determining the number of factors to retain by identifying
the point where the eigenvalues exceed the reference eigenvalue. The plot provides a graphical
representation to assist in factor selection.

Usage

S3 method for class 'EKC'
plot(x, ...)

Arguments

x An object of class EKC, representing the results to be plotted.
... Additional arguments to be passed to the plotting function.

Value

None. This function is used for side effects (plotting).

See Also

EKC

Examples

library(EFAfactors)
set.seed(123)

##Take the data.bfi dataset as an example.
data(data.bfi)

response <- as.matrix(data.bfi[, 1:25]) ## loading data
response <- na.omit(response) ## Remove samples with NA/missing values

Transform the scores of reverse-scored items to normal scoring
response[, c(1, 9, 10, 11, 12, 22, 25)] <- 6 - response[, c(1, 9, 10, 11, 12, 22, 25)] + 1

EKC.obj <- EKC(response)

EKC plot
plot(EKC.obj)

plot.FF 63

plot.FF Plot Factor Forest (FF) Classification Probability Distribution

Description

This function generates a bar plot of the classification probabilities predicted by the Factor Forest
for determining the number of factors. The plot displays the probability distribution across different
numbers of factors, with each bar representing the probability for a specific number of factors.
Unlike the deep neural network (DNN) model, the Factor Forest can evaluate up to a maximum of
8 factors. The function also annotates each bar with its probability value.

Usage

S3 method for class 'FF'
plot(x, ...)

Arguments

x An object of class FF, representing the results to be plotted.

... Additional arguments to be passed to the plotting function.

Value

None. This function is used for side effects (plotting).

See Also

FF

Examples

library(EFAfactors)
set.seed(123)

Take the data.bfi dataset as an example.
data(data.bfi)

response <- as.matrix(data.bfi[, 1:25]) ## Load data
response <- na.omit(response) ## Remove samples with NA/missing values

Transform the scores of reverse-scored items to normal scoring
response[, c(1, 9, 10, 11, 12, 22, 25)] <- 6 - response[, c(1, 9, 10, 11, 12, 22, 25)] + 1

FF.obj <- FF(response)

Plot the FF probabilities
plot(FF.obj)

64 plot.Hull

plot.Hull Plot Hull Plot for Factor Analysis

Description

This function creates a Hull plot to visualize the relationship between the Comparative Fit Index
(CFI) and the degrees of freedom (df) for a range of models with different numbers of factors. The
Hull plot helps in assessing model fit and identifying optimal models.

Usage

S3 method for class 'Hull'
plot(x, ...)

Arguments

x An object of class Hull, representing the results to be plotted.

... Additional arguments to be passed to the plotting function.

Value

None. This function is used for side effects (plotting).

See Also

Hull

Examples

library(EFAfactors)
set.seed(123)

##Take the data.bfi dataset as an example.
data(data.bfi)

response <- as.matrix(data.bfi[, 1:25]) ## loading data
response <- na.omit(response) ## Remove samples with NA/missing values

Transform the scores of reverse-scored items to normal scoring
response[, c(1, 9, 10, 11, 12, 22, 25)] <- 6 - response[, c(1, 9, 10, 11, 12, 22, 25)] + 1

Hull.obj <- CD(response)

Hull plot
plot(Hull.obj)

plot.KGC 65

plot.KGC Plot Kaiser-Guttman Criterion (KGC) Plot

Description

This function generates a Kaiser-Guttman Criterion (KGC) plot to visualize the eigenvalues of the
actual data. The Kaiser-Guttman Criterion, also known as the Kaiser criterion, suggests retaining
factors with eigenvalues greater than 1. The plot shows the eigenvalues and includes a reference
line at 1 to indicate the threshold for factor retention.

Usage

S3 method for class 'KGC'
plot(x, ...)

Arguments

x An object of class KGC, representing the results to be plotted.

... Additional arguments to be passed to the plotting function.

Value

None. This function is used for side effects (plotting).

See Also

KGC

Examples

library(EFAfactors)
set.seed(123)

Take the data.bfi dataset as an example.
data(data.bfi)

response <- as.matrix(data.bfi[, 1:25]) ## Load data
response <- na.omit(response) ## Remove samples with NA/missing values

Transform the scores of reverse-scored items to normal scoring
response[, c(1, 9, 10, 11, 12, 22, 25)] <- 6 - response[, c(1, 9, 10, 11, 12, 22, 25)] + 1

KGC.obj <- KGC(response)

66 plot.PA

Plot the Kaiser-Guttman Criterion
plot(KGC.obj)

plot.PA Plot Parallel Analysis Scree Plot

Description

This function creates a Parallel Analysis (PA) scree plot to compare the eigenvalues of the actual
data with the eigenvalues from simulated data. The plot helps in determining the number of factors
by visualizing where the eigenvalues of the actual data intersect with those from simulated data. It
provides a graphical representation of the results from a parallel analysis to aid in factor selection.

Usage

S3 method for class 'PA'
plot(x, ...)

Arguments

x An object of class PA, representing the results to be plotted.

... Additional arguments to be passed to the plotting function.

Value

None. This function is used for side effects (plotting).

See Also

PA

Examples

library(EFAfactors)
set.seed(123)

##Take the data.bfi dataset as an example.
data(data.bfi)

response <- as.matrix(data.bfi[, 1:25]) ## loading data
response <- na.omit(response) ## Remove samples with NA/missing values

Transform the scores of reverse-scored items to normal scoring
response[, c(1, 9, 10, 11, 12, 22, 25)] <- 6 - response[, c(1, 9, 10, 11, 12, 22, 25)] + 1

PA.obj <- PA(response)

predictLearner.classif.xgboost.earlystop 67

PA plot
plot(PA.obj)

predictLearner.classif.xgboost.earlystop

Prediction Function for the Tuned XGBoost Model with Early Stop-
ping

Description

This function performs predictions using a trained XGBoost model with early stopping. The func-
tion itself does not have any specific purpose; its existence is solely to ensure the proper operation
of FF.

Usage

S3 method for class 'classif.xgboost.earlystop'
predictLearner(.learner, .model, .newdata, ...)

Arguments

.learner An object representing the learner.

.model The trained XGBoost model used to make predictions.

.newdata A data frame or matrix containing new observations for which predictions are to
be made.

... Additional parameters passed to the predict function in XGBoost.

Value

A vector of predicted class labels or a matrix of predicted probabilities.

68 print.CDF

print.CD Print Comparison Data Method Results

Description

This function prints the number of factors suggested by the Comparison Data (CD) method.

Usage

S3 method for class 'CD'
print(x, ...)

Arguments

x An object of class CD, representing the results to be printed.

... Additional arguments to be passed to the plotting function.

Value

None. This function is used for side effects (printing).

See Also

CD

print.CDF Print Comparison Data Forest (CDF) Results

Description

This function prints the number of factors suggested by the Comparison Data Forest.

Usage

S3 method for class 'CDF'
print(x, ...)

Arguments

x An object of class CDF, representing the results to be printed.

... Additional arguments to be passed to the plotting function.

Value

None. This function is used for side effects (printing).

print.DNN_predictor 69

See Also

CDF

print.DNN_predictor Print DNN Predictor Method Results

Description

This function prints the number of factors suggested by the deep neural network (DNN) predictor.

Usage

S3 method for class 'DNN_predictor'
print(x, ...)

Arguments

x An object of class DNN_predictor, representing the results to be printed.

... Additional arguments to be passed to the plotting function.

Value

None. This function is used for side effects (printing).

See Also

DNN_predictor

print.EFAdata Print the EFAsim.data

Description

This function prints the items in factors.

Usage

S3 method for class 'EFAdata'
print(x, ...)

Arguments

x An object of class EFA.data, representing the results to be printed.

... Additional arguments to be passed to the plotting function.

70 print.EFAkmeans

Value

None. This function is used for side effects (printing).

See Also

EFAsim.data

print.EFAhclust Print EFAhclust Method Results

Description

This function prints the number of factors suggested by the EFAhclust method using the Second-
Order Difference (SOD) approach.

Usage

S3 method for class 'EFAhclust'
print(x, ...)

Arguments

x An object of class EFAhclust, representing the results to be printed.

... Additional arguments to be passed to the plotting function.

Value

None. This function is used for side effects (printing).

See Also

EFAhclust

print.EFAkmeans Print EFAkmeans Method Results

Description

This function prints the number of factors suggested by the EFAkmeans method using the Second-
Order Difference (SOD) approach.

Usage

S3 method for class 'EFAkmeans'
print(x, ...)

print.EFAscreet 71

Arguments

x An object of class EFAkmeans, representing the results to be printed.

... Additional arguments to be passed to the plotting function.

Value

None. This function is used for side effects (printing).

See Also

EFAkmeans

print.EFAscreet Print the Scree Plot

Description

Prints a brief summary of an object of class EFAscreet. This function will display the scree plot of
the eigenvalues when called, providing a visual representation of the factor analysis results.

Usage

S3 method for class 'EFAscreet'
print(x, ...)

Arguments

x An object of class EFAscreet, which contains the eigenvalues from the factor
analysis.

... Additional arguments to be passed to the plotting function.

Value

None. This function is used for side effects (printing).

72 print.EKC

print.EFAvote Print Voting Method Results

Description

This function prints the number of factors suggested by the voting.

Usage

S3 method for class 'EFAvote'
print(x, ...)

Arguments

x An object of class EFAvote, representing the results to be printed.

... Additional arguments to be passed to the plotting function.

Value

None. This function is used for side effects (printing).

See Also

EFAvote

print.EKC Print Empirical Kaiser Criterion Results

Description

This function prints the number of factors suggested by the Empirical Kaiser Criterion (EKC).

Usage

S3 method for class 'EKC'
print(x, ...)

Arguments

x An object of class EKC, representing the results to be printed.

... Additional arguments to be passed to the plotting function.

Value

None. This function is used for side effects (printing).

print.FF 73

See Also

EKC

print.FF Print Factor Forest (FF) Results

Description

This function prints the number of factors suggested by the Factor Forest.

Usage

S3 method for class 'FF'
print(x, ...)

Arguments

x An object of class FF, representing the results to be printed.

... Additional arguments to be passed to the plotting function.

Value

None. This function is used for side effects (printing).

See Also

FF

print.Hull Print Hull Method Results

Description

This function prints the number of factors suggested by the Hull method.

Usage

S3 method for class 'Hull'
print(x, ...)

Arguments

x An object of class Hull, representing the results to be printed.

... Additional arguments to be passed to the print function.

74 print.PA

Value

None. This function is used for side effects (printing).

See Also

Hull

print.KGC Print Kaiser-Guttman Criterion Results

Description

This function prints the number of factors suggested by the Kaiser-Guttman Criterion (KGC).

Usage

S3 method for class 'KGC'
print(x, ...)

Arguments

x An object of class KGC, representing the results to be printed.

... Additional arguments to be passed to the plotting function.

Value

None. This function is used for side effects (printing).

See Also

KGC

print.PA Print Parallel Analysis Method Results

Description

This function prints the number of factors suggested by the Parallel Analysis (PA) method.

Usage

S3 method for class 'PA'
print(x, ...)

print.PA 75

Arguments

x An object of class PA, representing the results to be printed.

... Additional arguments to be passed to the plotting function.

Value

None. This function is used for side effects (printing).

See Also

PA

Index

af.softmax, 3

CD, 4, 9, 40, 41, 55, 68
CDF, 7, 41, 56, 69
cor, 4, 8, 14, 15, 18, 20, 24, 29, 31, 33, 36, 38,

42, 44, 47, 53

data.bfi, 10
data.datasets, 13, 14, 15, 49, 51
data.scaler, 13, 13, 49, 51
DNN_predictor, 3, 13, 14, 14, 31, 32, 49, 51,

57, 69

EFAhclust, 15, 17, 32, 58, 70
EFAindex, 20, 45
EFAkmeans, 16, 18, 21, 22, 32, 59, 71
EFAscreet, 23
EFAsim.data, 25, 70
EFAvote, 27, 61, 72
EKC, 16, 28, 32, 40, 62, 73
extractor.feature.DNN, 15, 31
extractor.feature.FF, 9, 33

fa, 20
factor.analysis, 23, 35, 44, 47, 52
FF, 38, 50, 63, 67, 73

GenData, 6, 8, 9, 41
GenDataPopulation, 41

hclust, 17–19
Hull, 44, 64, 74

KGC, 46, 65, 74
kmeans, 21

load_DNN, 48
load_scaler, 13, 14, 49, 51
load_xgb, 50, 50

model.xgb, 50

normalizor, 13, 14, 49, 51

PA, 40, 45, 52, 66, 75
plot.CD, 5, 55
plot.CDF, 8, 56
plot.DNN_predictor, 15, 57
plot.EFAhclust, 18, 57
plot.EFAkmeans, 22, 58
plot.EFAscreet, 24, 59
plot.EFAvote, 28, 61
plot.EKC, 29, 62
plot.FF, 38, 63
plot.Hull, 44, 64
plot.KGC, 47, 65
plot.PA, 53, 66
predictLearner.classif.xgboost.earlystop,

67
print.CD, 68
print.CDF, 68
print.DNN_predictor, 69
print.EFAdata, 69
print.EFAhclust, 70
print.EFAkmeans, 70
print.EFAscreet, 71
print.EFAvote, 72
print.EKC, 72
print.FF, 73
print.Hull, 73
print.KGC, 74
print.PA, 74

VSS, 20

76

	af.softmax
	CD
	CDF
	data.bfi
	data.datasets
	data.scaler
	DNN_predictor
	EFAhclust
	EFAindex
	EFAkmeans
	EFAscreet
	EFAsim.data
	EFAvote
	EKC
	extractor.feature.DNN
	extractor.feature.FF
	factor.analysis
	FF
	GenData
	Hull
	KGC
	load_DNN
	load_scaler
	load_xgb
	model.xgb
	normalizor
	PA
	plot.CD
	plot.CDF
	plot.DNN_predictor
	plot.EFAhclust
	plot.EFAkmeans
	plot.EFAscreet
	plot.EFAvote
	plot.EKC
	plot.FF
	plot.Hull
	plot.KGC
	plot.PA
	predictLearner.classif.xgboost.earlystop
	print.CD
	print.CDF
	print.DNN_predictor
	print.EFAdata
	print.EFAhclust
	print.EFAkmeans
	print.EFAscreet
	print.EFAvote
	print.EKC
	print.FF
	print.Hull
	print.KGC
	print.PA
	Index

