CRAN Package Check Results for Package cobs

Last updated on 2024-11-22 03:52:32 CET.

Flavor Version Tinstall Tcheck Ttotal Status Flags
r-devel-linux-x86_64-debian-clang 1.3-8 9.91 112.79 122.70 ERROR
r-devel-linux-x86_64-debian-gcc 1.3-8 7.34 87.74 95.08 OK
r-devel-linux-x86_64-fedora-clang 1.3-8 198.59 ERROR
r-devel-linux-x86_64-fedora-gcc 1.3-8 203.68 OK
r-devel-windows-x86_64 1.3-8 14.00 132.00 146.00 OK
r-patched-linux-x86_64 1.3-8 11.51 115.79 127.30 OK
r-release-linux-x86_64 1.3-8 10.40 114.40 124.80 OK
r-release-macos-arm64 1.3-8 69.00 OK
r-release-macos-x86_64 1.3-8 96.00 OK
r-release-windows-x86_64 1.3-8 14.00 131.00 145.00 OK
r-oldrel-macos-arm64 1.3-8 74.00 OK
r-oldrel-macos-x86_64 1.3-8 160.00 OK
r-oldrel-windows-x86_64 1.3-8 17.00 166.00 183.00 OK

Check Details

Version: 1.3-8
Check: tests
Result: ERROR Running ‘0_pt-ex.R’ [2s/3s] Running ‘ex1.R’ [3s/4s] Running ‘ex2-long.R’ [5s/6s] Running ‘ex3.R’ [2s/3s] Comparing ‘ex3.Rout’ to ‘ex3.Rout.save’ ... OK Running ‘multi-constr.R’ [4s/5s] Running ‘roof.R’ [4s/5s] Comparing ‘roof.Rout’ to ‘roof.Rout.save’ ... OK Running ‘small-ex.R’ [3s/3s] Comparing ‘small-ex.Rout’ to ‘small-ex.Rout.save’ ...24,25d23 < Warning message: < In cobs(x, y) : drqssbc2(): Not all flags are normal (== 1), ifl : 22 30,33d27 < WARNING! Since the number of 6 knots selected by AIC reached the < upper bound during general knot selection, you might want to rerun < cobs with a larger number of knots. < 35,38d28 < < WARNING! Since the number of 6 knots selected by AIC reached the < upper bound during general knot selection, you might want to rerun < cobs with a larger number of knots. 41,44c31,34 < {tau=0.5}-quantile; dimensionality of fit: 7 from {7} < x$knots[1:6]: 0.999989, 2.000000, 3.000000, ... , 12.000011 < coef[1:7]: 7.99991, 11.99996, 20.00000, 32.00000, 44.00000, 72.00004, 96.00009 < R^2 = 99.88% ; empirical tau (over all): 5/7 = 0.714286 (target tau= 0.5) --- > {tau=0.5}-quantile; dimensionality of fit: 3 from {3} > x$knots[1:2]: 0.999989, 12.000011 > coef[1:3]: 7.99991, 52.00000, 96.00009 > R^2 = 99.88% ; empirical tau (over all): 3/7 = 0.428571 (target tau= 0.5) 52,55c42,45 < {tau=0.5}-quantile; dimensionality of fit: 5 from {5} < x$knots[1:4]: 0.999989, 2.000000, 5.000000, 12.000011 < coef[1:5]: 6.9999, 11.5277, 29.4167, 68.5834, 96.0001 < R^2 = 99.87% ; empirical tau (over all): 3/7 = 0.428571 (target tau= 0.5) --- > {tau=0.5}-quantile; dimensionality of fit: 3 from {3} > x$knots[1:2]: 0.999989, 12.000011 > coef[1:3]: 7.54157, 54.29167, 96.00008 > R^2 = 99.84% ; empirical tau (over all): 3/7 = 0.428571 (target tau= 0.5) 60c50 < [1] 7.66907 --- > [1] 9.71528 69,170c59,158 < [1,] 0.999989 7.99991 3.16725 12.8326 NaN NaN < [2,] 1.111100 8.88880 4.38406 13.3935 NaN NaN < [3,] 1.222212 9.77769 5.54416 14.0112 NaN NaN < [4,] 1.333323 10.66658 6.65458 14.6786 NaN NaN < [5,] 1.444434 11.55548 7.72267 15.3883 NaN NaN < [6,] 1.555546 12.44437 8.75525 16.1335 NaN NaN < [7,] 1.666657 13.33326 9.75780 16.9087 NaN NaN < [8,] 1.777768 14.22215 10.73355 17.7107 NaN NaN < [9,] 1.888880 15.11104 11.68294 18.5391 NaN NaN < [10,] 1.999991 15.99993 12.60316 19.3967 NaN NaN < [11,] 2.111102 16.88882 13.49193 20.2857 NaN NaN < [12,] 2.222214 17.77771 14.35913 21.1963 NaN NaN < [13,] 2.333325 18.66660 15.21538 22.1178 NaN NaN < [14,] 2.444436 19.55549 16.06800 23.0430 NaN NaN < [15,] 2.555548 20.44438 16.92094 23.9678 NaN NaN < [16,] 2.666659 21.33327 17.77494 24.8916 NaN NaN < [17,] 2.777770 22.22216 18.62769 25.8166 NaN NaN < [18,] 2.888882 23.11105 19.47396 26.7481 NaN NaN < [19,] 2.999993 23.99994 20.30585 27.6940 NaN NaN < [20,] 3.111104 24.88884 21.11665 28.6610 NaN NaN < [21,] 3.222216 25.77773 21.91370 29.6417 NaN NaN < [22,] 3.333327 26.66662 22.70678 30.6265 NaN NaN < [23,] 3.444438 27.55551 23.50362 31.6074 NaN NaN < [24,] 3.555550 28.44440 24.31015 32.5786 NaN NaN < [25,] 3.666661 29.33329 25.13073 33.5358 NaN NaN < [26,] 3.777772 30.22218 25.96846 34.4759 NaN NaN < [27,] 3.888884 31.11107 26.82535 35.3968 NaN NaN < [28,] 3.999995 31.99996 27.70250 36.2974 NaN NaN < [29,] 4.111106 32.88885 28.60016 37.1775 NaN NaN < [30,] 4.222218 33.77774 29.51776 38.0377 NaN NaN < [31,] 4.333329 34.66663 30.45390 38.8794 NaN NaN < [32,] 4.444440 35.55552 31.40620 39.7049 NaN NaN < [33,] 4.555552 36.44441 32.37120 40.5176 NaN NaN < [34,] 4.666663 37.33330 33.34413 41.3225 NaN NaN < [35,] 4.777774 38.22219 34.31867 42.1257 NaN NaN < [36,] 4.888886 39.11109 35.28671 42.9355 NaN NaN < [37,] 4.999997 39.99998 36.23821 43.7617 NaN NaN < [38,] 5.111108 40.88887 37.16391 44.6138 NaN NaN < [39,] 5.222220 41.77776 38.06991 45.4856 NaN NaN < [40,] 5.333331 42.66665 38.96634 46.3670 NaN NaN < [41,] 5.444442 43.55554 39.86104 47.2500 NaN NaN < [42,] 5.555554 44.44443 40.75934 48.1295 NaN NaN < [43,] 5.666665 45.33332 41.66407 49.0026 NaN NaN < [44,] 5.777776 46.22221 42.57552 49.8689 NaN NaN < [45,] 5.888888 47.11110 43.49145 50.7308 NaN NaN < [46,] 5.999999 47.99999 44.40692 51.5931 NaN NaN < [47,] 6.111110 48.88888 45.30640 52.4714 NaN NaN < [48,] 6.222222 49.77777 46.18120 53.3744 NaN NaN < [49,] 6.333333 50.66666 47.03479 54.2985 NaN NaN < [50,] 6.444444 51.55555 47.87079 55.2403 NaN NaN < [51,] 6.555556 52.44445 48.69275 56.1961 NaN NaN < [52,] 6.666667 53.33334 49.50400 57.1627 NaN NaN < [53,] 6.777778 54.22223 50.30760 58.1368 NaN NaN < [54,] 6.888890 55.11112 51.10626 59.1160 NaN NaN < [55,] 7.000001 56.00001 51.90233 60.0977 NaN NaN < [56,] 7.111112 56.88890 52.69786 61.0799 NaN NaN < [57,] 7.222224 57.77779 53.49457 62.0610 NaN NaN < [58,] 7.333335 58.66668 54.29392 63.0394 NaN NaN < [59,] 7.444446 59.55557 55.09714 64.0140 NaN NaN < [60,] 7.555558 60.44446 55.90526 64.9837 NaN NaN < [61,] 7.666669 61.33335 56.71912 65.9476 NaN NaN < [62,] 7.777780 62.22224 57.53941 66.9051 NaN NaN < [63,] 7.888892 63.11113 58.36670 67.8556 NaN NaN < [64,] 8.000003 64.00002 59.20144 68.7986 NaN NaN < [65,] 8.111114 64.88891 60.04398 69.7338 NaN NaN < [66,] 8.222226 65.77781 60.89459 70.6610 NaN NaN < [67,] 8.333337 66.66670 61.75345 71.5799 NaN NaN < [68,] 8.444448 67.55559 62.62066 72.4905 NaN NaN < [69,] 8.555560 68.44448 63.49628 73.3927 NaN NaN < [70,] 8.666671 69.33337 64.38027 74.2865 NaN NaN < [71,] 8.777782 70.22226 65.27254 75.1720 NaN NaN < [72,] 8.888894 71.11115 66.17292 76.0494 NaN NaN < [73,] 9.000005 72.00004 67.08118 76.9189 NaN NaN < [74,] 9.111116 72.88893 67.99701 77.7808 NaN NaN < [75,] 9.222228 73.77782 68.92003 78.6356 NaN NaN < [76,] 9.333339 74.66671 69.84973 79.4837 NaN NaN < [77,] 9.444450 75.55560 70.78555 80.3257 NaN NaN < [78,] 9.555562 76.44449 71.72678 81.1622 NaN NaN < [79,] 9.666673 77.33338 72.67260 81.9942 NaN NaN < [80,] 9.777784 78.22227 73.62204 82.8225 NaN NaN < [81,] 9.888896 79.11116 74.57397 83.6484 NaN NaN < [82,] 10.000007 80.00006 75.52709 84.4730 NaN NaN < [83,] 10.111118 80.88895 76.47989 85.2980 NaN NaN < [84,] 10.222230 81.77784 77.43064 86.1250 NaN NaN < [85,] 10.333341 82.66673 78.37741 86.9560 NaN NaN < [86,] 10.444452 83.55562 79.31803 87.7932 NaN NaN < [87,] 10.555564 84.44451 80.25011 88.6389 NaN NaN < [88,] 10.666675 85.33340 81.17108 89.4957 NaN NaN < [89,] 10.777786 86.22229 82.07825 90.3663 NaN NaN < [90,] 10.888898 87.11118 82.96885 91.2535 NaN NaN < [91,] 11.000009 88.00007 83.84016 92.1600 NaN NaN < [92,] 11.111120 88.88896 84.68963 93.0883 NaN NaN < [93,] 11.222232 89.77785 85.51498 94.0407 NaN NaN < [94,] 11.333343 90.66674 86.31430 95.0192 NaN NaN < [95,] 11.444454 91.55563 87.08618 96.0251 NaN NaN < [96,] 11.555566 92.44452 87.82968 97.0594 NaN NaN < [97,] 11.666677 93.33342 88.54435 98.1225 NaN NaN < [98,] 11.777788 94.22231 89.23022 99.2144 NaN NaN < [99,] 11.888900 95.11120 89.88765 100.3347 NaN NaN < [100,] 12.000011 96.00009 90.51732 101.4829 NaN NaN < Warning message: < In qt((1 + level)/2, n - object$k) : NaNs produced --- > [1,] 0.999989 7.99991 4.82789 11.1719 4.84949 11.1503 > [2,] 1.111100 8.88880 5.84444 11.9332 5.86518 11.9124 > [3,] 1.222212 9.77769 6.85519 12.7002 6.87510 12.6803 > [4,] 1.333323 10.66658 7.85994 13.4732 7.87905 13.4541 > [5,] 1.444434 11.55548 8.85846 14.2525 8.87683 14.2341 > [6,] 1.555546 12.44437 9.85054 15.0382 9.86821 15.0205 > [7,] 1.666657 13.33326 10.83596 15.8305 10.85297 15.8135 > [8,] 1.777768 14.22215 11.81451 16.6298 11.83091 16.6134 > [9,] 1.888880 15.11104 12.78598 17.4361 12.80181 17.4203 > [10,] 1.999991 15.99993 13.75019 18.2497 13.76551 18.2343 > [11,] 2.111102 16.88882 14.70699 19.0706 14.72185 19.0558 > [12,] 2.222214 17.77771 15.65628 19.8991 15.67072 19.8847 > [13,] 2.333325 18.66660 16.59799 20.7352 16.61208 20.7211 > [14,] 2.444436 19.55549 17.53215 21.5788 17.54593 21.5651 > [15,] 2.555548 20.44438 18.45883 22.4299 18.47235 22.4164 > [16,] 2.666659 21.33327 19.37817 23.2884 19.39149 23.2751 > [17,] 2.777770 22.22216 20.29043 24.1539 20.30359 24.1407 > [18,] 2.888882 23.11105 21.19590 25.0262 21.20894 25.0132 > [19,] 2.999993 23.99994 22.09496 25.9049 22.10793 25.8920 > [20,] 3.111104 24.88884 22.98804 26.7896 23.00099 26.7767 > [21,] 3.222216 25.77773 23.87563 27.6798 23.88858 27.6669 > [22,] 3.333327 26.66662 24.75824 28.5750 24.77123 28.5620 > [23,] 3.444438 27.55551 25.63639 29.4746 25.64946 29.4616 > [24,] 3.555550 28.44440 26.51062 30.3782 26.52379 30.3650 > [25,] 3.666661 29.33329 27.38147 31.2851 27.39476 31.2718 > [26,] 3.777772 30.22218 28.24944 32.1949 28.26287 32.1815 > [27,] 3.888884 31.11107 29.11501 33.1071 29.12861 33.0935 > [28,] 3.999995 31.99996 29.97866 34.0213 29.99243 34.0075 > [29,] 4.111106 32.88885 30.84080 34.9369 30.85475 34.9230 > [30,] 4.222218 33.77774 31.70184 35.8536 31.71597 35.8395 > [31,] 4.333329 34.66663 32.56212 36.7711 32.57645 36.7568 > [32,] 4.444440 35.55552 33.42197 37.6891 33.43650 37.6745 > [33,] 4.555552 36.44441 34.28170 38.6071 34.29643 38.5924 > [34,] 4.666663 37.33330 35.14155 39.5251 35.15648 39.5101 > [35,] 4.777774 38.22219 36.00178 40.4426 36.01690 40.4275 > [36,] 4.888886 39.11109 36.86257 41.3596 36.87789 41.3443 > [37,] 4.999997 39.99998 37.72413 42.2758 37.73963 42.2603 > [38,] 5.111108 40.88887 38.58661 43.1911 38.60229 43.1754 > [39,] 5.222220 41.77776 39.45015 44.1054 39.46601 44.0895 > [40,] 5.333331 42.66665 40.31488 45.0184 40.33090 45.0024 > [41,] 5.444442 43.55554 41.18091 45.9302 41.19708 45.9140 > [42,] 5.555554 44.44443 42.04831 46.8405 42.06463 46.8242 > [43,] 5.666665 45.33332 42.91718 47.7495 42.93363 47.7330 > [44,] 5.777776 46.22221 43.78757 48.6569 43.80415 48.6403 > [45,] 5.888888 47.11110 44.65953 49.5627 44.67622 49.5460 > [46,] 5.999999 47.99999 45.53310 50.4669 45.54990 50.4501 > [47,] 6.111110 48.88888 46.40831 51.3695 46.42520 51.3526 > [48,] 6.222222 49.77777 47.28517 52.2704 47.30215 52.2534 > [49,] 6.333333 50.66666 48.16370 53.1696 48.18074 53.1526 > [50,] 6.444444 51.55555 49.04388 54.0672 49.06099 54.0501 > [51,] 6.555556 52.44445 49.92572 54.9632 49.94287 54.9460 > [52,] 6.666667 53.33334 50.80918 55.8575 50.82637 55.8403 > [53,] 6.777778 54.22223 51.69424 56.7502 51.71145 56.7330 > [54,] 6.888890 55.11112 52.58085 57.6414 52.59808 57.6242 > [55,] 7.000001 56.00001 53.46896 58.5311 53.48620 58.5138 > [56,] 7.111112 56.88890 54.35852 59.4193 54.37575 59.4020 > [57,] 7.222224 57.77779 55.24944 60.3061 55.26666 60.2889 > [58,] 7.333335 58.66668 56.14166 61.1917 56.15886 61.1745 > [59,] 7.444446 59.55557 57.03507 62.0761 57.05224 62.0589 > [60,] 7.555558 60.44446 57.92957 62.9593 57.94670 62.9422 > [61,] 7.666669 61.33335 58.82505 63.8417 58.84213 63.8246 > [62,] 7.777780 62.22224 59.72137 64.7231 59.73840 64.7061 > [63,] 7.888892 63.11113 60.61839 65.6039 60.63536 65.5869 > [64,] 8.000003 64.00002 61.51595 66.4841 61.53286 66.4672 > [65,] 8.111114 64.88891 62.41387 67.3640 62.43073 67.3471 > [66,] 8.222226 65.77781 63.31198 68.2436 63.32877 68.2268 > [67,] 8.333337 66.66670 64.21005 69.1233 64.22678 69.1066 > [68,] 8.444448 67.55559 65.10788 70.0033 65.12455 69.9866 > [69,] 8.555560 68.44448 66.00522 70.8837 66.02184 70.8671 > [70,] 8.666671 69.33337 66.90183 71.7649 66.91839 71.7484 > [71,] 8.777782 70.22226 67.79742 72.6471 67.81393 72.6306 > [72,] 8.888894 71.11115 68.69171 73.5306 68.70819 73.5141 > [73,] 9.000005 72.00004 69.58441 74.4157 69.60086 74.3992 > [74,] 9.111116 72.88893 70.47520 75.3027 70.49164 75.2862 > [75,] 9.222228 73.77782 71.36376 76.1919 71.38020 76.1754 > [76,] 9.333339 74.66671 72.24976 77.0837 72.26622 77.0672 > [77,] 9.444450 75.55560 73.13285 77.9783 73.14935 77.9618 > [78,] 9.555562 76.44449 74.01272 78.8763 74.02928 78.8597 > [79,] 9.666673 77.33338 74.88902 79.7777 74.90567 79.7611 > [80,] 9.777784 78.22227 75.76143 80.6831 75.77819 80.6664 > [81,] 9.888896 79.11116 76.62965 81.5927 76.64655 81.5758 > [82,] 10.000007 80.00006 77.49337 82.5067 77.51044 82.4897 > [83,] 10.111118 80.88895 78.35232 83.4256 78.36960 83.4083 > [84,] 10.222230 81.77784 79.20626 84.3494 79.22378 84.3319 > [85,] 10.333341 82.66673 80.05498 85.2785 80.07276 85.2607 > [86,] 10.444452 83.55562 80.89827 86.2130 80.91637 86.1949 > [87,] 10.555564 84.44451 81.73600 87.1530 81.75445 87.1346 > [88,] 10.666675 85.33340 82.56803 88.0988 82.58687 88.0799 > [89,] 10.777786 86.22229 83.39429 89.0503 83.41355 89.0310 > [90,] 10.888898 87.11118 84.21470 90.0077 84.23443 89.9879 > [91,] 11.000009 88.00007 85.02924 90.9709 85.04947 90.9507 > [92,] 11.111120 88.88896 85.83791 91.9400 85.85868 91.9192 > [93,] 11.222232 89.77785 86.64072 92.9150 86.66208 92.8936 > [94,] 11.333343 90.66674 87.43771 93.8958 87.45970 93.8738 > [95,] 11.444454 91.55563 88.22894 94.8823 88.25160 94.8597 > [96,] 11.555566 92.44452 89.01448 95.8746 89.03784 95.8512 > [97,] 11.666677 93.33342 89.79440 96.8724 89.81850 96.8483 > [98,] 11.777788 94.22231 90.56880 97.8758 90.59368 97.8509 > [99,] 11.888900 95.11120 91.33776 98.8846 91.36346 98.8589 > [100,] 12.000011 96.00009 92.10139 99.8988 92.12794 99.8722 173,272c161,260 < [1,] 0.999989 6.99990 3.03158 10.9682 1.86823 12.1316 < [2,] 1.111100 8.00539 4.30309 11.7077 3.21772 12.7931 < [3,] 1.222212 9.00951 5.53158 12.4874 4.51198 13.5070 < [4,] 1.333323 10.01225 6.72328 13.3012 5.75908 14.2654 < [5,] 1.444434 11.01363 7.88455 14.1427 6.96722 15.0600 < [6,] 1.555546 12.01363 9.02114 15.0061 8.14386 15.8834 < [7,] 1.666657 13.01226 10.13756 15.8870 9.29481 16.7297 < [8,] 1.777768 14.00952 11.23638 16.7827 10.42341 17.5956 < [9,] 1.888880 15.00541 12.31766 17.6931 11.52972 18.4811 < [10,] 1.999991 15.99992 13.37843 18.6214 12.60991 19.3899 < [11,] 2.111102 16.99146 14.40588 19.5770 13.64789 20.3350 < [12,] 2.222214 17.97843 15.39456 20.5623 14.63706 21.3198 < [13,] 2.333325 18.96083 16.35072 21.5709 15.58553 22.3361 < [14,] 2.444436 19.93866 17.28099 22.5963 16.50186 23.3755 < [15,] 2.555548 20.91191 18.19172 23.6321 17.39427 24.4296 < [16,] 2.666659 21.88059 19.08863 24.6726 18.27014 25.4910 < [17,] 2.777770 22.84470 19.97659 25.7128 19.13577 26.5536 < [18,] 2.888882 23.80424 20.85962 26.7489 19.99637 27.6121 < [19,] 2.999993 24.75920 21.74097 27.7774 20.85614 28.6623 < [20,] 3.111104 25.70959 22.62322 28.7960 21.71841 29.7008 < [21,] 3.222216 26.65541 23.50837 29.8024 22.58579 30.7250 < [22,] 3.333327 27.59665 24.39799 30.7953 23.46026 31.7330 < [23,] 3.444438 28.53333 25.29322 31.7734 24.34335 32.7233 < [24,] 3.555550 29.46543 26.19492 32.7359 25.23614 33.6947 < [25,] 3.666661 30.39296 27.10367 33.6822 26.13938 34.6465 < [26,] 3.777772 31.31591 28.01980 34.6120 27.05351 35.5783 < [27,] 3.888884 32.23430 28.94342 35.5252 27.97867 36.4899 < [28,] 3.999995 33.14811 29.87444 36.4218 28.91473 37.3815 < [29,] 4.111106 34.05735 30.81254 37.3021 29.86129 38.2534 < [30,] 4.222218 34.96201 31.75717 38.1669 30.81763 39.1064 < [31,] 4.333329 35.86211 32.70749 39.0167 31.78268 39.9415 < [32,] 4.444440 36.75763 33.66238 39.8529 32.75497 40.7603 < [33,] 4.555552 37.64857 34.62032 40.6768 33.73256 41.5646 < [34,] 4.666663 38.53495 35.57935 41.4905 34.71289 42.3570 < [35,] 4.777774 39.41675 36.53696 42.2965 35.69271 43.1408 < [36,] 4.888886 40.29398 37.48996 43.0980 36.66793 43.9200 < [37,] 4.999997 41.16664 38.43442 43.8989 37.63343 44.6999 < [38,] 5.111108 42.03702 39.36327 44.7108 38.57944 45.4946 < [39,] 5.222220 42.90739 40.27308 45.5417 39.50080 46.3140 < [40,] 5.333331 43.77776 41.16494 46.3906 40.39897 47.1566 < [41,] 5.444442 44.64813 42.04034 47.2559 41.27584 48.0204 < [42,] 5.555554 45.51850 42.90102 48.1360 42.13367 48.9033 < [43,] 5.666665 46.38888 43.74886 49.0289 42.97491 49.8028 < [44,] 5.777776 47.25925 44.58585 49.9326 43.80212 50.7164 < [45,] 5.888888 48.12962 45.41393 50.8453 44.61780 51.6414 < [46,] 5.999999 48.99999 46.23496 51.7650 45.42435 52.5756 < [47,] 6.111110 49.87036 47.05065 52.6901 46.22401 53.5167 < [48,] 6.222222 50.74074 47.86256 53.6189 47.01879 54.4627 < [49,] 6.333333 51.61111 48.67208 54.5501 47.81047 55.4117 < [50,] 6.444444 52.48148 49.48043 55.4825 48.60064 56.3623 < [51,] 6.555556 53.35185 50.28866 56.4150 49.39065 57.3131 < [52,] 6.666667 54.22222 51.09768 57.3468 50.18168 58.2628 < [53,] 6.777778 55.09260 51.90827 58.2769 50.97474 59.2104 < [54,] 6.888890 55.96297 52.72109 59.2049 51.77069 60.1552 < [55,] 7.000001 56.83334 53.53669 60.1300 52.57024 61.0964 < [56,] 7.111112 57.70371 54.35556 61.0519 53.37401 62.0334 < [57,] 7.222224 58.57409 55.17808 61.9701 54.18250 62.9657 < [58,] 7.333335 59.44446 56.00457 62.8843 54.99612 63.8928 < [59,] 7.444446 60.31483 56.83529 63.7944 55.81523 64.8144 < [60,] 7.555558 61.18520 57.67046 64.6999 56.64008 65.7303 < [61,] 7.666669 62.05557 58.51024 65.6009 57.47089 66.6403 < [62,] 7.777780 62.92595 59.35475 66.4971 58.30781 67.5441 < [63,] 7.888892 63.79632 60.20406 67.3886 59.15095 68.4417 < [64,] 8.000003 64.66669 61.05822 68.2752 60.00036 69.3330 < [65,] 8.111114 65.53706 61.91723 69.1569 60.85603 70.2181 < [66,] 8.222226 66.40743 62.78106 70.0338 61.71794 71.0969 < [67,] 8.333337 67.27781 63.64964 70.9060 62.58601 71.9696 < [68,] 8.444448 68.14818 64.52289 71.7735 63.46009 72.8363 < [69,] 8.555560 69.01855 65.40065 72.6365 64.34002 73.6971 < [70,] 8.666671 69.88892 66.28276 73.4951 65.22557 74.5523 < [71,] 8.777782 70.75929 67.16899 74.3496 66.11645 75.4021 < [72,] 8.888894 71.62967 68.05909 75.2002 67.01234 76.2470 < [73,] 9.000005 72.50004 68.95275 76.0473 67.91282 77.0873 < [74,] 9.111116 73.37041 69.84961 76.8912 68.81744 77.9234 < [75,] 9.222228 74.24078 70.74924 77.7323 69.72566 78.7559 < [76,] 9.333339 75.11116 71.65117 78.5711 70.63683 79.5855 < [77,] 9.444450 75.98153 72.55483 79.4082 71.55026 80.4128 < [78,] 9.555562 76.85190 73.45961 80.2442 72.46512 81.2387 < [79,] 9.666673 77.72227 74.36478 81.0798 73.38049 82.0640 < [80,] 9.777784 78.59264 75.26955 81.9157 74.29534 82.8899 < [81,] 9.888896 79.46302 76.17301 82.7530 75.20851 83.7175 < [82,] 10.000007 80.33339 77.07419 83.5926 76.11871 84.5481 < [83,] 10.111118 81.20376 77.97198 84.4355 77.02455 85.3830 < [84,] 10.222230 82.07413 78.86522 85.2830 77.92449 86.2238 < [85,] 10.333341 82.94450 79.75265 86.1364 78.81693 87.0721 < [86,] 10.444452 83.81488 80.63296 86.9968 79.70014 87.9296 < [87,] 10.555564 84.68525 81.50479 87.8657 80.57240 88.7981 < [88,] 10.666675 85.55562 82.36678 88.7445 81.43193 89.6793 < [89,] 10.777786 86.42599 83.21762 89.6344 82.27705 90.5749 < [90,] 10.888898 87.29636 84.05606 90.5367 83.10613 91.4866 < [91,] 11.000009 88.16674 84.88099 91.4525 83.91773 92.4157 < [92,] 11.111120 89.03711 85.69142 92.3828 84.71060 93.3636 < [93,] 11.222232 89.90748 86.48660 93.3284 85.48373 94.3312 < [94,] 11.333343 90.77785 87.26593 94.2898 86.23637 95.3193 < [95,] 11.444454 91.64822 88.02905 95.2674 86.96805 96.3284 < [96,] 11.555566 92.51860 88.77578 96.2614 87.67853 97.3587 < [97,] 11.666677 93.38897 89.50614 97.2718 88.36784 98.4101 < [98,] 11.777788 94.25934 90.22026 98.2984 89.03616 99.4825 < [99,] 11.888900 95.12971 90.91843 99.3410 89.68385 100.5756 < [100,] 12.000011 96.00009 91.60102 100.3992 90.31138 101.6888 --- > [1,] 0.999989 7.54157 3.84088 11.2423 3.86608 11.2171 > [2,] 1.111100 8.48551 4.93375 12.0373 4.95794 12.0131 > [3,] 1.222212 9.42841 6.01883 12.8380 6.04205 12.8148 > [4,] 1.333323 10.37028 7.09586 13.6447 7.11816 13.6224 > [5,] 1.444434 11.31113 8.16461 14.4576 8.18604 14.4362 > [6,] 1.555546 12.25095 9.22482 15.2771 9.24543 15.2565 > [7,] 1.666657 13.18973 10.27623 16.1032 10.29607 16.0834 > [8,] 1.777768 14.12749 11.31858 16.9364 11.33771 16.9173 > [9,] 1.888880 15.06422 12.35165 17.7768 12.37013 17.7583 > [10,] 1.999991 15.99993 13.37523 18.6246 13.39310 18.6067 > [11,] 2.111102 16.93460 14.38913 19.4801 14.40646 19.4627 > [12,] 2.222214 17.86824 15.39324 20.3432 15.41009 20.3264 > [13,] 2.333325 18.80086 16.38748 21.2142 16.40392 21.1978 > [14,] 2.444436 19.73244 17.37188 22.0930 17.38795 22.0769 > [15,] 2.555548 20.66300 18.34652 22.9795 18.36229 22.9637 > [16,] 2.666659 21.59253 19.31158 23.8735 19.32712 23.8579 > [17,] 2.777770 22.52103 20.26734 24.7747 20.28269 24.7594 > [18,] 2.888882 23.44850 21.21415 25.6828 21.22937 25.6676 > [19,] 2.999993 24.37494 22.15246 26.5974 22.16759 26.5823 > [20,] 3.111104 25.30036 23.08276 27.5179 23.09787 27.5028 > [21,] 3.222216 26.22474 24.00563 28.4439 24.02074 28.4287 > [22,] 3.333327 27.14810 24.92165 29.3745 24.93682 29.3594 > [23,] 3.444438 28.07042 25.83145 30.3094 25.84670 30.2941 > [24,] 3.555550 28.99172 26.73565 31.2478 26.75102 31.2324 > [25,] 3.666661 29.91199 27.63487 32.1891 27.65038 32.1736 > [26,] 3.777772 30.83123 28.52970 33.1328 28.54537 33.1171 > [27,] 3.888884 31.74944 29.42071 34.0782 29.43657 34.0623 > [28,] 3.999995 32.66663 30.30844 35.0248 30.32450 35.0087 > [29,] 4.111106 33.58278 31.19339 35.9722 31.20966 35.9559 > [30,] 4.222218 34.49791 32.07601 36.9198 32.09251 36.9033 > [31,] 4.333329 35.41200 32.95673 37.8673 32.97345 37.8505 > [32,] 4.444440 36.32507 33.83593 38.8142 33.85288 38.7973 > [33,] 4.555552 37.23711 34.71394 39.7603 34.73112 39.7431 > [34,] 4.666663 38.14812 35.59108 40.7052 35.60849 40.6877 > [35,] 4.777774 39.05810 36.46761 41.6486 36.48525 41.6309 > [36,] 4.888886 39.96705 37.34379 42.5903 37.36165 42.5725 > [37,] 4.999997 40.87498 38.21982 43.5301 38.23791 43.5120 > [38,] 5.111108 41.78187 39.09591 44.4678 39.11420 44.4495 > [39,] 5.222220 42.68774 39.97220 45.4033 39.99069 45.3848 > [40,] 5.333331 43.59257 40.84885 46.3363 40.86754 46.3176 > [41,] 5.444442 44.49638 41.72598 47.2668 41.74485 47.2479 > [42,] 5.555554 45.39916 42.60369 48.1946 42.62273 48.1756 > [43,] 5.666665 46.30091 43.48208 49.1197 43.50128 49.1005 > [44,] 5.777776 47.20163 44.36122 50.0421 44.38056 50.0227 > [45,] 5.888888 48.10133 45.24116 50.9615 45.26064 50.9420 > [46,] 5.999999 48.99999 46.12195 51.8780 46.14155 51.8584 > [47,] 6.111110 49.89763 47.00362 52.7916 47.02333 52.7719 > [48,] 6.222222 50.79423 47.88620 53.7023 47.90600 53.6825 > [49,] 6.333333 51.68981 48.76968 54.6099 48.78957 54.5901 > [50,] 6.444444 52.58436 49.65408 55.5146 49.67404 55.4947 > [51,] 6.555556 53.47788 50.53937 56.4164 50.55938 56.3964 > [52,] 6.666667 54.37037 51.42553 57.3152 51.44558 57.2952 > [53,] 6.777778 55.26184 52.31252 58.2112 52.33260 58.1911 > [54,] 6.888890 56.15227 53.20029 59.1043 53.22039 59.0841 > [55,] 7.000001 57.04167 54.08879 59.9946 54.10890 59.9745 > [56,] 7.111112 57.93005 54.97794 60.8822 54.99804 60.8621 > [57,] 7.222224 58.81740 55.86766 61.7671 55.88775 61.7470 > [58,] 7.333335 59.70372 56.75786 62.6496 56.77792 62.6295 > [59,] 7.444446 60.58901 57.64842 63.5296 57.66845 63.5096 > [60,] 7.555558 61.47327 58.53923 64.4073 58.55921 64.3873 > [61,] 7.666669 62.35650 59.43015 65.2829 59.45008 65.2629 > [62,] 7.777780 63.23870 60.32102 66.1564 60.34089 66.1365 > [63,] 7.888892 64.11988 61.21168 67.0281 61.23148 67.0083 > [64,] 8.000003 65.00002 62.10193 67.8981 62.12167 67.8784 > [65,] 8.111114 65.87914 62.99159 68.7667 63.01126 68.7470 > [66,] 8.222226 66.75723 63.88043 69.6340 63.90002 69.6144 > [67,] 8.333337 67.63429 64.76820 70.5004 64.78772 70.4809 > [68,] 8.444448 68.51032 65.65466 71.3660 65.67411 71.3465 > [69,] 8.555560 69.38532 66.53952 72.2311 66.55890 72.2117 > [70,] 8.666671 70.25929 67.42249 73.0961 67.44181 73.0768 > [71,] 8.777782 71.13224 68.30326 73.9612 68.32252 73.9420 > [72,] 8.888894 72.00415 69.18148 74.8268 69.20070 74.8076 > [73,] 9.000005 72.87504 70.05681 75.6933 70.07600 75.6741 > [74,] 9.111116 73.74490 70.92888 76.5609 70.94806 76.5417 > [75,] 9.222228 74.61373 71.79732 77.4301 71.81650 77.4109 > [76,] 9.333339 75.48153 72.66174 78.3013 72.68095 78.2821 > [77,] 9.444450 76.34830 73.52176 79.1748 73.54101 79.1556 > [78,] 9.555562 77.21404 74.37697 80.0511 74.39629 80.0318 > [79,] 9.666673 78.07875 75.22700 80.9305 75.24642 80.9111 > [80,] 9.777784 78.94244 76.07146 81.8134 76.09101 81.7939 > [81,] 9.888896 79.80509 76.90999 82.7002 76.92971 82.6805 > [82,] 10.000007 80.66672 77.74225 83.5912 77.76217 83.5713 > [83,] 10.111118 81.52732 78.56792 84.4867 78.58808 84.4666 > [84,] 10.222230 82.38689 79.38672 85.3871 79.40715 85.3666 > [85,] 10.333341 83.24543 80.19839 86.2925 80.21914 86.2717 > [86,] 10.444452 84.10294 81.00271 87.2032 81.02382 87.1821 > [87,] 10.555564 84.95942 81.79950 88.1194 81.82102 88.0978 > [88,] 10.666675 85.81488 82.58862 89.0411 82.61059 89.0192 > [89,] 10.777786 86.66930 83.36997 89.9686 83.39244 89.9462 > [90,] 10.888898 87.52270 84.14347 90.9019 84.16649 90.8789 > [91,] 11.000009 88.37507 84.90910 91.8410 84.93270 91.8174 > [92,] 11.111120 89.22641 85.66684 92.7860 85.69108 92.7617 > [93,] 11.222232 90.07672 86.41672 93.7367 86.44165 93.7118 > [94,] 11.333343 90.92600 87.15879 94.6932 87.18445 94.6676 > [95,] 11.444454 91.77425 87.89311 95.6554 87.91954 95.6290 > [96,] 11.555566 92.62148 88.61975 96.6232 88.64701 96.5959 > [97,] 11.666677 93.46767 89.33882 97.5965 89.36694 97.5684 > [98,] 11.777788 94.31284 90.05041 98.5753 90.07944 98.5462 > [99,] 11.888900 95.15697 90.75463 99.5593 90.78461 99.5293 > [100,] 12.000011 96.00008 91.45160 100.5486 91.48257 100.5176 Running ‘spline-ex.R’ [2s/3s] Comparing ‘spline-ex.Rout’ to ‘spline-ex.Rout.save’ ... OK Running ‘temp.R’ [3s/5s] Comparing ‘temp.Rout’ to ‘temp.Rout.save’ ...29,31d28 < Warning message: < In cobs(year, temp, knots.add = TRUE, degree = 1, constraint = "increase", : < drqssbc2(): Not all flags are normal (== 1), ifl : 22 35,42c32,35 < < **** ERROR in algorithm: ifl = 22 < < < {tau=0.5}-quantile; dimensionality of fit: 5 from {5} < x$knots[1:5]: 1880, 1908, 1936, 1964, 1992 < coef[1:5]: -0.39324840, -0.28115087, 0.05916295, -0.07465159, 0.31227753 < R^2 = 73.22% ; empirical tau (over all): 63/113 = 0.5575221 (target tau= 0.5) --- > {tau=0.5}-quantile; dimensionality of fit: 4 from {4} > x$knots[1:4]: 1880, 1936, 1964, 1992 > coef[1:4]: -0.47054145, -0.01648649, -0.01648649, 0.27562279 > R^2 = 70.37% ; empirical tau (over all): 56/113 = 0.4955752 (target tau= 0.5) 52,54d44 < Warning message: < In cobs(year, temp, nknots = 9, knots.add = TRUE, degree = 1, constraint = "increase", : < drqssbc2(): Not all flags are normal (== 1), ifl : 22 58,65c48,51 < < **** ERROR in algorithm: ifl = 22 < < < {tau=0.5}-quantile; dimensionality of fit: 5 from {5} < x$knots[1:5]: 1880, 1908, 1936, 1964, 1992 < coef[1:5]: -0.39324840, -0.28115087, 0.05916295, -0.07465159, 0.31227753 < R^2 = 73.22% ; empirical tau (over all): 63/113 = 0.5575221 (target tau= 0.5) --- > {tau=0.5}-quantile; dimensionality of fit: 4 from {4} > x$knots[1:4]: 1880, 1936, 1964, 1992 > coef[1:4]: -0.47054145, -0.01648649, -0.01648649, 0.27562279 > R^2 = 70.37% ; empirical tau (over all): 56/113 = 0.4955752 (target tau= 0.5) 69,71d54 < Warning message: < In cobs(year, temp, nknots = length(a50$knots), knots = a50$knot, : < drqssbc2(): Not all flags are normal (== 1), ifl : 22 75,82c58,61 < < **** ERROR in algorithm: ifl = 22 < < < {tau=0.1}-quantile; dimensionality of fit: 5 from {5} < x$knots[1:5]: 1880, 1908, 1936, 1964, 1992 < coef[1:5]: -0.39324885, -0.28115087, 0.05916295, -0.07465159, 0.31227907 < empirical tau (over all): 63/113 = 0.5575221 (target tau= 0.1) --- > {tau=0.1}-quantile; dimensionality of fit: 4 from {4} > x$knots[1:4]: 1880, 1936, 1964, 1992 > coef[1:4]: -0.5700016, -0.1700000, -0.1700000, 0.1300024 > empirical tau (over all): 12/113 = 0.1061947 (target tau= 0.1) 85,87d63 < Warning message: < In cobs(year, temp, nknots = length(a50$knots), knots = a50$knot, : < drqssbc2(): Not all flags are normal (== 1), ifl : 22 91,98c67,70 < < **** ERROR in algorithm: ifl = 22 < < < {tau=0.9}-quantile; dimensionality of fit: 5 from {5} < x$knots[1:5]: 1880, 1908, 1936, 1964, 1992 < coef[1:5]: -0.39324885, -0.28115087, 0.05916295, -0.07465159, 0.31227907 < empirical tau (over all): 63/113 = 0.5575221 (target tau= 0.9) --- > {tau=0.9}-quantile; dimensionality of fit: 4 from {4} > x$knots[1:4]: 1880, 1936, 1964, 1992 > coef[1:4]: -0.2576939, 0.1300000, 0.1300000, 0.4961568 > empirical tau (over all): 104/113 = 0.920354 (target tau= 0.9) 101,103c73 < [1] 1 2 9 10 17 18 20 21 22 23 26 27 35 36 42 47 48 49 52 < [20] 53 58 59 61 62 63 64 65 68 73 74 78 79 80 81 82 83 84 88 < [39] 90 91 94 98 100 101 102 104 108 109 111 112 --- > [1] 10 18 21 22 47 61 74 102 111 105,108c75 < [1] 3 4 5 6 7 8 11 12 13 14 15 16 19 24 25 28 29 30 31 < [20] 32 33 34 37 38 39 40 41 43 44 45 46 50 51 54 55 56 57 60 < [39] 66 67 69 70 71 72 75 76 77 85 86 87 89 92 93 95 96 97 99 < [58] 103 105 106 107 110 113 --- > [1] 5 8 25 28 38 39 85 86 92 95 97 113 113,225c80,192 < [1,] 1880 -0.393247953 -0.568567598 -0.217928308 -0.497693198 -0.2888027083 < [2,] 1881 -0.389244486 -0.556686706 -0.221802266 -0.488996819 -0.2894921527 < [3,] 1882 -0.385241019 -0.544932639 -0.225549398 -0.480375996 -0.2901060418 < [4,] 1883 -0.381237552 -0.533324789 -0.229150314 -0.471842280 -0.2906328235 < [5,] 1884 -0.377234084 -0.521886218 -0.232581951 -0.463409410 -0.2910587589 < [6,] 1885 -0.373230617 -0.510644405 -0.235816829 -0.455093758 -0.2913674769 < [7,] 1886 -0.369227150 -0.499632120 -0.238822180 -0.446914845 -0.2915394558 < [8,] 1887 -0.365223683 -0.488888394 -0.241558972 -0.438895923 -0.2915514428 < [9,] 1888 -0.361220216 -0.478459556 -0.243980875 -0.431064594 -0.2913758376 < [10,] 1889 -0.357216749 -0.468400213 -0.246033284 -0.423453388 -0.2909801092 < [11,] 1890 -0.353213282 -0.458773976 -0.247652588 -0.416100202 -0.2903263615 < [12,] 1891 -0.349209814 -0.449653605 -0.248766024 -0.409048381 -0.2893712477 < [13,] 1892 -0.345206347 -0.441120098 -0.249292596 -0.402346180 -0.2880665146 < [14,] 1893 -0.341202880 -0.433260133 -0.249145628 -0.396045236 -0.2863605248 < [15,] 1894 -0.337199413 -0.426161346 -0.248237480 -0.390197757 -0.2842010691 < [16,] 1895 -0.333195946 -0.419905293 -0.246486599 -0.384852330 -0.2815395617 < [17,] 1896 -0.329192479 -0.414558712 -0.243826246 -0.380048714 -0.2783362437 < [18,] 1897 -0.325189012 -0.410164739 -0.240213284 -0.375812606 -0.2745654171 < [19,] 1898 -0.321185545 -0.406736420 -0.235634669 -0.372151779 -0.2702193101 < [20,] 1899 -0.317182077 -0.404254622 -0.230109533 -0.369054834 -0.2653093212 < [21,] 1900 -0.313178610 -0.402671075 -0.223686145 -0.366493014 -0.2598642062 < [22,] 1901 -0.309175143 -0.401915491 -0.216434795 -0.364424447 -0.2539258394 < [23,] 1902 -0.305171676 -0.401904507 -0.208438845 -0.362799469 -0.2475438831 < [24,] 1903 -0.301168209 -0.402550192 -0.199786225 -0.361565696 -0.2407707212 < [25,] 1904 -0.297164742 -0.403766666 -0.190562818 -0.360671966 -0.2336575172 < [26,] 1905 -0.293161275 -0.405474370 -0.180848179 -0.360070883 -0.2262516664 < [27,] 1906 -0.289157807 -0.407602268 -0.170713347 -0.359720126 -0.2185954887 < [28,] 1907 -0.285154340 -0.410088509 -0.160220171 -0.359582850 -0.2107258307 < [29,] 1908 -0.281150873 -0.412880143 -0.149421603 -0.359627508 -0.2026742377 < [30,] 1909 -0.268996808 -0.394836115 -0.143157501 -0.343964546 -0.1940290700 < [31,] 1910 -0.256842743 -0.376961386 -0.136724100 -0.328402442 -0.1852830438 < [32,] 1911 -0.244688678 -0.359281315 -0.130096042 -0.312956304 -0.1764210522 < [33,] 1912 -0.232534613 -0.341825431 -0.123243796 -0.297643724 -0.1674255025 < [34,] 1913 -0.220380548 -0.324627946 -0.116133151 -0.282485083 -0.1582760137 < [35,] 1914 -0.208226483 -0.307728160 -0.108724807 -0.267503793 -0.1489491732 < [36,] 1915 -0.196072418 -0.291170651 -0.100974185 -0.252726413 -0.1394184235 < [37,] 1916 -0.183918353 -0.275005075 -0.092831631 -0.238182523 -0.1296541835 < [38,] 1917 -0.171764288 -0.259285340 -0.084243236 -0.223904239 -0.1196243373 < [39,] 1918 -0.159610223 -0.244067933 -0.075152513 -0.209925213 -0.1092952334 < [40,] 1919 -0.147456158 -0.229409203 -0.065503113 -0.196279015 -0.0986333019 < [41,] 1920 -0.135302093 -0.215361603 -0.055242584 -0.182996891 -0.0876072953 < [42,] 1921 -0.123148028 -0.201969188 -0.044326869 -0.170105089 -0.0761909673 < [43,] 1922 -0.110993963 -0.189263062 -0.032724864 -0.157622139 -0.0643657877 < [44,] 1923 -0.098839898 -0.177257723 -0.020422074 -0.145556676 -0.0521231208 < [45,] 1924 -0.086685833 -0.165949224 -0.007422442 -0.133906350 -0.0394653164 < [46,] 1925 -0.074531768 -0.155315688 0.006252152 -0.122658128 -0.0264054087 < [47,] 1926 -0.062377703 -0.145320002 0.020564595 -0.111789900 -0.0129655072 < [48,] 1927 -0.050223638 -0.135913981 0.035466704 -0.101272959 0.0008256822 < [49,] 1928 -0.038069573 -0.127043003 0.050903856 -0.091074767 0.0149356198 < [50,] 1929 -0.025915508 -0.118650261 0.066819244 -0.081161479 0.0293304619 < [51,] 1930 -0.013761444 -0.110680090 0.083157203 -0.071499934 0.0439770474 < [52,] 1931 -0.001607379 -0.103080234 0.099865477 -0.062059002 0.0588442451 < [53,] 1932 0.010546686 -0.095803129 0.116896502 -0.052810346 0.0739037194 < [54,] 1933 0.022700751 -0.088806436 0.134207939 -0.043728744 0.0891302464 < [55,] 1934 0.034854816 -0.082053049 0.151762682 -0.034792088 0.1045017213 < [56,] 1935 0.047008881 -0.075510798 0.169528561 -0.025981216 0.1199989785 < [57,] 1936 0.059162946 -0.069151984 0.187477877 -0.017279624 0.1356055167 < [58,] 1937 0.054383856 -0.068135824 0.176903535 -0.018606241 0.1273739530 < [59,] 1938 0.049604765 -0.067303100 0.166512631 -0.020042139 0.1192516703 < [60,] 1939 0.044825675 -0.066681512 0.156332862 -0.021603820 0.1112551700 < [61,] 1940 0.040046585 -0.066303231 0.146396400 -0.023310448 0.1034036175 < [62,] 1941 0.035267494 -0.066205361 0.136740349 -0.025184129 0.0957191177 < [63,] 1942 0.030488404 -0.066430243 0.127407050 -0.027250087 0.0882268946 < [64,] 1943 0.025709313 -0.067025439 0.118444066 -0.029536657 0.0809552836 < [65,] 1944 0.020930223 -0.068043207 0.109903653 -0.032074970 0.0739354160 < [66,] 1945 0.016151132 -0.069539210 0.101841475 -0.034898188 0.0672004530 < [67,] 1946 0.011372042 -0.071570257 0.094314341 -0.038040154 0.0607842381 < [68,] 1947 0.006592951 -0.074190969 0.087376871 -0.041533408 0.0547193111 < [69,] 1948 0.001813861 -0.077449530 0.081077252 -0.045406656 0.0490343779 < [70,] 1949 -0.002965230 -0.081383054 0.075452595 -0.049682007 0.0437515481 < [71,] 1950 -0.007744320 -0.086013419 0.070524779 -0.054372496 0.0388838557 < [72,] 1951 -0.012523410 -0.091344570 0.066297749 -0.059480471 0.0344336506 < [73,] 1952 -0.017302501 -0.097362010 0.062757009 -0.064997299 0.0303922971 < [74,] 1953 -0.022081591 -0.104034636 0.059871454 -0.070904448 0.0267412650 < [75,] 1954 -0.026860682 -0.111318392 0.057597028 -0.077175672 0.0234543081 < [76,] 1955 -0.031639772 -0.119160824 0.055881280 -0.083779723 0.0205001786 < [77,] 1956 -0.036418863 -0.127505585 0.054667859 -0.090683032 0.0178453070 < [78,] 1957 -0.041197953 -0.136296186 0.053900280 -0.097851948 0.0154560415 < [79,] 1958 -0.045977044 -0.145478720 0.053524633 -0.105254354 0.0133002664 < [80,] 1959 -0.050756134 -0.155003532 0.053491263 -0.112860669 0.0113484004 < [81,] 1960 -0.055535225 -0.164826042 0.053755593 -0.120644335 0.0095738862 < [82,] 1961 -0.060314315 -0.174906951 0.054278321 -0.128581941 0.0079533109 < [83,] 1962 -0.065093405 -0.185212049 0.055025238 -0.136653105 0.0064662939 < [84,] 1963 -0.069872496 -0.195711803 0.055966811 -0.144840234 0.0050952422 < [85,] 1964 -0.074651586 -0.206380857 0.057077684 -0.153128222 0.0038250490 < [86,] 1965 -0.060832745 -0.185766914 0.064101424 -0.135261254 0.0135957648 < [87,] 1966 -0.047013903 -0.165458364 0.071430557 -0.117576222 0.0235484155 < [88,] 1967 -0.033195062 -0.145508157 0.079118034 -0.100104670 0.0337145466 < [89,] 1968 -0.019376220 -0.125978144 0.087225704 -0.082883444 0.0441310044 < [90,] 1969 -0.005557378 -0.106939362 0.095824605 -0.065954866 0.0548401092 < [91,] 1970 0.008261463 -0.088471368 0.104994294 -0.049366330 0.0658892560 < [92,] 1971 0.022080305 -0.070660043 0.114820653 -0.033168999 0.0773296085 < [93,] 1972 0.035899146 -0.053593318 0.125391611 -0.017415258 0.0892135504 < [94,] 1973 0.049717988 -0.037354556 0.136790532 -0.002154768 0.1015907442 < [95,] 1974 0.063536830 -0.022014046 0.149087705 0.012570595 0.1145030640 < [96,] 1975 0.077355671 -0.007620056 0.162331398 0.026732077 0.1279792657 < [97,] 1976 0.091174513 0.005808280 0.176540746 0.040318278 0.1420307479 < [98,] 1977 0.104993354 0.018284008 0.191702701 0.053336970 0.1566497385 < [99,] 1978 0.118812196 0.029850263 0.207774129 0.065813852 0.1718105399 < [100,] 1979 0.132631038 0.040573785 0.224688290 0.077788682 0.1874733929 < [101,] 1980 0.146449879 0.050536128 0.242363630 0.089310046 0.2035897119 < [102,] 1981 0.160268721 0.059824930 0.260712511 0.100430154 0.2201072876 < [103,] 1982 0.174087562 0.068526868 0.279648256 0.111200642 0.2369744825 < [104,] 1983 0.187906404 0.076722940 0.299089868 0.121669764 0.2541430435 < [105,] 1984 0.201725246 0.084485905 0.318964586 0.131880867 0.2715696238 < [106,] 1985 0.215544087 0.091879376 0.339208798 0.141871847 0.2892163274 < [107,] 1986 0.229362929 0.098957959 0.359767899 0.151675234 0.3070506231 < [108,] 1987 0.243181770 0.105767982 0.380595558 0.161318630 0.3250449108 < [109,] 1988 0.257000612 0.112348478 0.401652745 0.170825286 0.3431759375 < [110,] 1989 0.270819454 0.118732216 0.422906691 0.180214725 0.3614241817 < [111,] 1990 0.284638295 0.124946675 0.444329916 0.189503318 0.3797732721 < [112,] 1991 0.298457137 0.131014917 0.465899357 0.198704804 0.3982094699 < [113,] 1992 0.312275978 0.136956333 0.487595623 0.207830734 0.4167212231 --- > [1,] 1880 -0.470540541 -0.580395233 -0.360685849 -0.541226637 -0.399854444 > [2,] 1881 -0.462432432 -0.569650451 -0.355214414 -0.531421959 -0.393442906 > [3,] 1882 -0.454324324 -0.558928137 -0.349720511 -0.521631738 -0.387016910 > [4,] 1883 -0.446216216 -0.548230020 -0.344202412 -0.511857087 -0.380575346 > [5,] 1884 -0.438108108 -0.537557989 -0.338658227 -0.502099220 -0.374116996 > [6,] 1885 -0.430000000 -0.526914115 -0.333085885 -0.492359472 -0.367640528 > [7,] 1886 -0.421891892 -0.516300667 -0.327483116 -0.482639300 -0.361144484 > [8,] 1887 -0.413783784 -0.505720132 -0.321847435 -0.472940307 -0.354627261 > [9,] 1888 -0.405675676 -0.495175238 -0.316176113 -0.463264247 -0.348087105 > [10,] 1889 -0.397567568 -0.484668976 -0.310466159 -0.453613044 -0.341522091 > [11,] 1890 -0.389459459 -0.474204626 -0.304714293 -0.443988810 -0.334930108 > [12,] 1891 -0.381351351 -0.463785782 -0.298916920 -0.434393857 -0.328308845 > [13,] 1892 -0.373243243 -0.453416379 -0.293070107 -0.424830717 -0.321655770 > [14,] 1893 -0.365135135 -0.443100719 -0.287169552 -0.415302157 -0.314968113 > [15,] 1894 -0.357027027 -0.432843496 -0.281210558 -0.405811200 -0.308242854 > [16,] 1895 -0.348918919 -0.422649821 -0.275188017 -0.396361132 -0.301476706 > [17,] 1896 -0.340810811 -0.412525238 -0.269096384 -0.386955521 -0.294666101 > [18,] 1897 -0.332702703 -0.402475737 -0.262929668 -0.377598222 -0.287807183 > [19,] 1898 -0.324594595 -0.392507759 -0.256681430 -0.368293379 -0.280895810 > [20,] 1899 -0.316486486 -0.382628180 -0.250344793 -0.359045416 -0.273927557 > [21,] 1900 -0.308378378 -0.372844288 -0.243912468 -0.349859024 -0.266897733 > [22,] 1901 -0.300270270 -0.363163733 -0.237376807 -0.340739124 -0.259801417 > [23,] 1902 -0.292162162 -0.353594450 -0.230729874 -0.331690821 -0.252633503 > [24,] 1903 -0.284054054 -0.344144557 -0.223963551 -0.322719340 -0.245388768 > [25,] 1904 -0.275945946 -0.334822217 -0.217069675 -0.313829934 -0.238061958 > [26,] 1905 -0.267837838 -0.325635470 -0.210040206 -0.305027774 -0.230647901 > [27,] 1906 -0.259729730 -0.316592032 -0.202867427 -0.296317828 -0.223141632 > [28,] 1907 -0.251621622 -0.307699075 -0.195544168 -0.287704708 -0.215538535 > [29,] 1908 -0.243513514 -0.298962989 -0.188064038 -0.279192527 -0.207834500 > [30,] 1909 -0.235405405 -0.290389150 -0.180421661 -0.270784743 -0.200026067 > [31,] 1910 -0.227297297 -0.281981702 -0.172612893 -0.262484025 -0.192110570 > [32,] 1911 -0.219189189 -0.273743385 -0.164634993 -0.254292134 -0.184086245 > [33,] 1912 -0.211081081 -0.265675409 -0.156486753 -0.246209849 -0.175952313 > [34,] 1913 -0.202972973 -0.257777400 -0.148168546 -0.238236929 -0.167709017 > [35,] 1914 -0.194864865 -0.250047417 -0.139682313 -0.230372126 -0.159357604 > [36,] 1915 -0.186756757 -0.242482039 -0.131031475 -0.222613238 -0.150900276 > [37,] 1916 -0.178648649 -0.235076516 -0.122220781 -0.214957209 -0.142340088 > [38,] 1917 -0.170540541 -0.227824968 -0.113256113 -0.207400255 -0.133680826 > [39,] 1918 -0.162432432 -0.220720606 -0.104144259 -0.199938008 -0.124926856 > [40,] 1919 -0.154324324 -0.213755974 -0.094892674 -0.192565671 -0.116082978 > [41,] 1920 -0.146216216 -0.206923176 -0.085509256 -0.185278162 -0.107154270 > [42,] 1921 -0.138108108 -0.200214092 -0.076002124 -0.178070257 -0.098145959 > [43,] 1922 -0.130000000 -0.193620560 -0.066379440 -0.170936704 -0.089063296 > [44,] 1923 -0.121891892 -0.187134533 -0.056649251 -0.163872326 -0.079911458 > [45,] 1924 -0.113783784 -0.180748200 -0.046819367 -0.156872096 -0.070695472 > [46,] 1925 -0.105675676 -0.174454074 -0.036897277 -0.149931196 -0.061420156 > [47,] 1926 -0.097567568 -0.168245056 -0.026890080 -0.143045058 -0.052090077 > [48,] 1927 -0.089459459 -0.162114471 -0.016804448 -0.136209390 -0.042709529 > [49,] 1928 -0.081351351 -0.156056093 -0.006646610 -0.129420182 -0.033282521 > [50,] 1929 -0.073243243 -0.150064140 0.003577654 -0.122673716 -0.023812771 > [51,] 1930 -0.065135135 -0.144133276 0.013863006 -0.115966557 -0.014303713 > [52,] 1931 -0.057027027 -0.138258588 0.024204534 -0.109295545 -0.004758509 > [53,] 1932 -0.048918919 -0.132435569 0.034597732 -0.102657780 0.004819942 > [54,] 1933 -0.040810811 -0.126660095 0.045038473 -0.096050607 0.014428985 > [55,] 1934 -0.032702703 -0.120928393 0.055522988 -0.089471600 0.024066194 > [56,] 1935 -0.024594595 -0.115237021 0.066047832 -0.082918542 0.033729353 > [57,] 1936 -0.016486486 -0.109582838 0.076609865 -0.076389415 0.043416442 > [58,] 1937 -0.016486486 -0.105401253 0.072428280 -0.073698770 0.040725797 > [59,] 1938 -0.016486486 -0.101403226 0.068430253 -0.071126236 0.038153263 > [60,] 1939 -0.016486486 -0.097615899 0.064642926 -0.068689277 0.035716305 > [61,] 1940 -0.016486486 -0.094070136 0.061097163 -0.066407753 0.033434780 > [62,] 1941 -0.016486486 -0.090800520 0.057827547 -0.064303916 0.031330943 > [63,] 1942 -0.016486486 -0.087845022 0.054872049 -0.062402198 0.029429225 > [64,] 1943 -0.016486486 -0.085244160 0.052271187 -0.060728671 0.027755698 > [65,] 1944 -0.016486486 -0.083039523 0.050066550 -0.059310095 0.026337122 > [66,] 1945 -0.016486486 -0.081271575 0.048298602 -0.058172508 0.025199535 > [67,] 1946 -0.016486486 -0.079976806 0.047003833 -0.057339388 0.024366415 > [68,] 1947 -0.016486486 -0.079184539 0.046211566 -0.056829602 0.023856629 > [69,] 1948 -0.016486486 -0.078913907 0.045940934 -0.056655464 0.023682491 > [70,] 1949 -0.016486486 -0.079171667 0.046198694 -0.056821320 0.023848347 > [71,] 1950 -0.016486486 -0.079951382 0.046978409 -0.057323028 0.024350055 > [72,] 1951 -0.016486486 -0.081234197 0.048261224 -0.058148457 0.025175484 > [73,] 1952 -0.016486486 -0.082991006 0.050018033 -0.059278877 0.026305904 > [74,] 1953 -0.016486486 -0.085185454 0.052212481 -0.060690897 0.027717924 > [75,] 1954 -0.016486486 -0.087777140 0.054804167 -0.062358519 0.029385546 > [76,] 1955 -0.016486486 -0.090724471 0.057751498 -0.064254982 0.031282009 > [77,] 1956 -0.016486486 -0.093986883 0.061013910 -0.066354184 0.033381211 > [78,] 1957 -0.016486486 -0.097526332 0.064553359 -0.068631645 0.035658672 > [79,] 1958 -0.016486486 -0.101308145 0.068335172 -0.071065056 0.038092083 > [80,] 1959 -0.016486486 -0.105301366 0.072328393 -0.073634498 0.040661525 > [81,] 1960 -0.016486486 -0.109478765 0.076505793 -0.076322449 0.043349476 > [82,] 1961 -0.016486486 -0.113816631 0.080843658 -0.079113653 0.046140680 > [83,] 1962 -0.016486486 -0.118294454 0.085321481 -0.081994911 0.049021938 > [84,] 1963 -0.016486486 -0.122894566 0.089921593 -0.084954858 0.051981885 > [85,] 1964 -0.016486486 -0.127601781 0.094628808 -0.087983719 0.055010746 > [86,] 1965 -0.006054054 -0.111440065 0.099331957 -0.073864774 0.061756666 > [87,] 1966 0.004378378 -0.095541433 0.104298190 -0.059915111 0.068671868 > [88,] 1967 0.014810811 -0.079951422 0.109573043 -0.046164030 0.075785651 > [89,] 1968 0.025243243 -0.064723125 0.115209611 -0.032645694 0.083132181 > [90,] 1969 0.035675676 -0.049917365 0.121268716 -0.019399240 0.090750592 > [91,] 1970 0.046108108 -0.035602017 0.127818233 -0.006468342 0.098684559 > [92,] 1971 0.056540541 -0.021849988 0.134931069 0.006100087 0.106980994 > [93,] 1972 0.066972973 -0.008735416 0.142681362 0.018258345 0.115687601 > [94,] 1973 0.077405405 0.003672103 0.151138707 0.029961648 0.124849163 > [95,] 1974 0.087837838 0.015314778 0.160360898 0.041172812 0.134502863 > [96,] 1975 0.098270270 0.026154092 0.170386449 0.051867053 0.144673488 > [97,] 1976 0.108702703 0.036176523 0.181228883 0.062035669 0.155369736 > [98,] 1977 0.119135135 0.045395695 0.192874575 0.071687429 0.166582842 > [99,] 1978 0.129567568 0.053850212 0.205284923 0.080847170 0.178287965 > [100,] 1979 0.140000000 0.061597925 0.218402075 0.089552117 0.190447883 > [101,] 1980 0.150432432 0.068708461 0.232156404 0.097847072 0.203017792 > [102,] 1981 0.160864865 0.075255962 0.246473767 0.105779742 0.215949987 > [103,] 1982 0.171297297 0.081313324 0.261281271 0.113397031 0.229197563 > [104,] 1983 0.181729730 0.086948395 0.276511065 0.120742598 0.242716862 > [105,] 1984 0.192162162 0.092221970 0.292102355 0.127855559 0.256468766 > [106,] 1985 0.202594595 0.097187112 0.308002077 0.134770059 0.270419130 > [107,] 1986 0.213027027 0.101889333 0.324164721 0.141515381 0.284538673 > [108,] 1987 0.223459459 0.106367224 0.340551695 0.148116359 0.298802560 > [109,] 1988 0.233891892 0.110653299 0.357130484 0.154593913 0.313189871 > [110,] 1989 0.244324324 0.114774857 0.373873791 0.160965608 0.327683041 > [111,] 1990 0.254756757 0.118754798 0.390758715 0.167246179 0.342267335 > [112,] 1991 0.265189189 0.122612348 0.407766030 0.173447997 0.356930381 > [113,] 1992 0.275621622 0.126363680 0.424879564 0.179581470 0.371661774 228,340c195,307 < [1,] 1880 -0.393247953 -0.638616081 -0.147879825 -0.539424009 -0.247071897 < [2,] 1881 -0.389244486 -0.623587786 -0.154901186 -0.528852590 -0.249636382 < [3,] 1882 -0.385241019 -0.608736988 -0.161745049 -0.518386915 -0.252095123 < [4,] 1883 -0.381237552 -0.594090828 -0.168384275 -0.508043150 -0.254431953 < [5,] 1884 -0.377234084 -0.579681581 -0.174786588 -0.497840525 -0.256627644 < [6,] 1885 -0.373230617 -0.565547708 -0.180913527 -0.487801951 -0.258659284 < [7,] 1886 -0.369227150 -0.551735068 -0.186719232 -0.477954750 -0.260499551 < [8,] 1887 -0.365223683 -0.538298290 -0.192149076 -0.468331465 -0.262115901 < [9,] 1888 -0.361220216 -0.525302213 -0.197138218 -0.458970724 -0.263469708 < [10,] 1889 -0.357216749 -0.512823261 -0.201610236 -0.449918056 -0.264515441 < [11,] 1890 -0.353213282 -0.500950461 -0.205476102 -0.441226498 -0.265200065 < [12,] 1891 -0.349209814 -0.489785646 -0.208633983 -0.432956717 -0.265462912 < [13,] 1892 -0.345206347 -0.479442174 -0.210970520 -0.425176244 -0.265236451 < [14,] 1893 -0.341202880 -0.470041356 -0.212364405 -0.417957348 -0.264448412 < [15,] 1894 -0.337199413 -0.461705842 -0.212692984 -0.411373100 -0.263025726 < [16,] 1895 -0.333195946 -0.454549774 -0.211842118 -0.405491497 -0.260900395 < [17,] 1896 -0.329192479 -0.448666556 -0.209718402 -0.400368183 -0.258016774 < [18,] 1897 -0.325189012 -0.444116558 -0.206261466 -0.396039125 -0.254338899 < [19,] 1898 -0.321185545 -0.440918038 -0.201453051 -0.392515198 -0.249855891 < [20,] 1899 -0.317182077 -0.439044218 -0.195319937 -0.389780451 -0.244583704 < [21,] 1900 -0.313178610 -0.438427544 -0.187929677 -0.387794638 -0.238562582 < [22,] 1901 -0.309175143 -0.438969642 -0.179380644 -0.386499155 -0.231851132 < [23,] 1902 -0.305171676 -0.440553844 -0.169789508 -0.385824495 -0.224518857 < [24,] 1903 -0.301168209 -0.443057086 -0.159279332 -0.385697347 -0.216639071 < [25,] 1904 -0.297164742 -0.446359172 -0.147970311 -0.386046103 -0.208283380 < [26,] 1905 -0.293161275 -0.450348759 -0.135973790 -0.386804433 -0.199518116 < [27,] 1906 -0.289157807 -0.454926427 -0.123389188 -0.387913107 -0.190402508 < [28,] 1907 -0.285154340 -0.460005614 -0.110303066 -0.389320557 -0.180988124 < [29,] 1908 -0.281150873 -0.465512212 -0.096789534 -0.390982633 -0.171319113 < [30,] 1909 -0.268996808 -0.445114865 -0.092878751 -0.373917700 -0.164075916 < [31,] 1910 -0.256842743 -0.424954461 -0.088731025 -0.356993924 -0.156691562 < [32,] 1911 -0.244688678 -0.405066488 -0.084310868 -0.340232447 -0.149144910 < [33,] 1912 -0.232534613 -0.385492277 -0.079576949 -0.323657890 -0.141411336 < [34,] 1913 -0.220380548 -0.366279707 -0.074481389 -0.307298779 -0.133462317 < [35,] 1914 -0.208226483 -0.347483782 -0.068969185 -0.291187880 -0.125265087 < [36,] 1915 -0.196072418 -0.329166890 -0.062977947 -0.275362361 -0.116782475 < [37,] 1916 -0.183918353 -0.311398525 -0.056438181 -0.259863623 -0.107973083 < [38,] 1917 -0.171764288 -0.294254136 -0.049274440 -0.244736614 -0.098791963 < [39,] 1918 -0.159610223 -0.277812779 -0.041407667 -0.230028429 -0.089192017 < [40,] 1919 -0.147456158 -0.262153318 -0.032758999 -0.215786053 -0.079126264 < [41,] 1920 -0.135302093 -0.247349160 -0.023255026 -0.202053217 -0.068550970 < [42,] 1921 -0.123148028 -0.233461966 -0.012834091 -0.188866654 -0.057429402 < [43,] 1922 -0.110993963 -0.220535266 -0.001452661 -0.176252299 -0.045735628 < [44,] 1923 -0.098839898 -0.208589350 0.010909553 -0.164222236 -0.033457560 < [45,] 1924 -0.086685833 -0.197618695 0.024247028 -0.152773178 -0.020598488 < [46,] 1925 -0.074531768 -0.187592682 0.038529145 -0.141886883 -0.007176654 < [47,] 1926 -0.062377703 -0.178459370 0.053703964 -0.131532407 0.006777000 < [48,] 1927 -0.050223638 -0.170151322 0.069704045 -0.121669575 0.021222298 < [49,] 1928 -0.038069573 -0.162592093 0.086452946 -0.112252846 0.036113699 < [50,] 1929 -0.025915508 -0.155702177 0.103871160 -0.103234855 0.051403838 < [51,] 1930 -0.013761444 -0.149403669 0.121880782 -0.094569190 0.067046303 < [52,] 1931 -0.001607379 -0.143623435 0.140408678 -0.086212283 0.082997525 < [53,] 1932 0.010546686 -0.138294906 0.159388279 -0.078124475 0.099217848 < [54,] 1933 0.022700751 -0.133358827 0.178760330 -0.070270466 0.115671969 < [55,] 1934 0.034854816 -0.128763266 0.198472899 -0.062619318 0.132328951 < [56,] 1935 0.047008881 -0.124463200 0.218480963 -0.055144209 0.149161972 < [57,] 1936 0.059162946 -0.120419862 0.238745755 -0.047822043 0.166147936 < [58,] 1937 0.054383856 -0.117088225 0.225855937 -0.047769234 0.156536946 < [59,] 1938 0.049604765 -0.114013317 0.213222848 -0.047869369 0.147078900 < [60,] 1939 0.044825675 -0.111233903 0.200885253 -0.048145542 0.137796893 < [61,] 1940 0.040046585 -0.108795008 0.188888177 -0.048624577 0.128717746 < [62,] 1941 0.035267494 -0.106748562 0.177283550 -0.049337410 0.119872398 < [63,] 1942 0.030488404 -0.105153822 0.166130629 -0.050319343 0.111296150 < [64,] 1943 0.025709313 -0.104077355 0.155495982 -0.051610033 0.103028659 < [65,] 1944 0.020930223 -0.103592297 0.145452743 -0.053253050 0.095113496 < [66,] 1945 0.016151132 -0.103776551 0.136078816 -0.055294804 0.087597069 < [67,] 1946 0.011372042 -0.104709625 0.127453709 -0.057782662 0.080526746 < [68,] 1947 0.006592951 -0.106467962 0.119653865 -0.060762163 0.073948066 < [69,] 1948 0.001813861 -0.109119001 0.112746722 -0.064273484 0.067901206 < [70,] 1949 -0.002965230 -0.112714681 0.106784222 -0.068347568 0.062417108 < [71,] 1950 -0.007744320 -0.117285623 0.101796983 -0.073002655 0.057514015 < [72,] 1951 -0.012523410 -0.122837348 0.097790527 -0.078242036 0.053195215 < [73,] 1952 -0.017302501 -0.129349568 0.094744566 -0.084053625 0.049448623 < [74,] 1953 -0.022081591 -0.136778751 0.092615568 -0.090411486 0.046248303 < [75,] 1954 -0.026860682 -0.145063238 0.091341874 -0.097278888 0.043557524 < [76,] 1955 -0.031639772 -0.154129620 0.090850076 -0.104612098 0.041332553 < [77,] 1956 -0.036418863 -0.163899035 0.091061309 -0.112364133 0.039526407 < [78,] 1957 -0.041197953 -0.174292425 0.091896518 -0.120487896 0.038091990 < [79,] 1958 -0.045977044 -0.185234342 0.093280255 -0.128938440 0.036984353 < [80,] 1959 -0.050756134 -0.196655293 0.095143025 -0.137674365 0.036162097 < [81,] 1960 -0.055535225 -0.208492888 0.097422439 -0.146658502 0.035588053 < [82,] 1961 -0.060314315 -0.220692125 0.100063495 -0.155858084 0.035229454 < [83,] 1962 -0.065093405 -0.233205123 0.103018312 -0.165244586 0.035057775 < [84,] 1963 -0.069872496 -0.245990553 0.106245561 -0.174793388 0.035048396 < [85,] 1964 -0.074651586 -0.259012925 0.109709752 -0.184483346 0.035180173 < [86,] 1965 -0.060832745 -0.235684019 0.114018529 -0.164998961 0.043333472 < [87,] 1966 -0.047013903 -0.212782523 0.118754717 -0.145769203 0.051741396 < [88,] 1967 -0.033195062 -0.190382546 0.123992423 -0.126838220 0.060448097 < [89,] 1968 -0.019376220 -0.168570650 0.129818210 -0.108257582 0.069505142 < [90,] 1969 -0.005557378 -0.147446255 0.136331499 -0.090086516 0.078971760 < [91,] 1970 0.008261463 -0.127120705 0.143643631 -0.072391356 0.088914283 < [92,] 1971 0.022080305 -0.107714195 0.151874804 -0.055243707 0.099404316 < [93,] 1972 0.035899146 -0.089349787 0.161148080 -0.038716881 0.110515174 < [94,] 1973 0.049717988 -0.072144153 0.171580129 -0.022880386 0.122316362 < [95,] 1974 0.063536830 -0.056195664 0.183269323 -0.007792824 0.134866483 < [96,] 1975 0.077355671 -0.041571875 0.196283217 0.006505558 0.148205784 < [97,] 1976 0.091174513 -0.028299564 0.210648590 0.019998808 0.162350217 < [98,] 1977 0.104993354 -0.016360474 0.226347183 0.032697804 0.177288905 < [99,] 1978 0.118812196 -0.005694233 0.243318625 0.044638509 0.192985883 < [100,] 1979 0.132631038 0.003792562 0.261469513 0.055876570 0.209385506 < [101,] 1980 0.146449879 0.012214052 0.280685706 0.066479983 0.226419775 < [102,] 1981 0.160268721 0.019692889 0.300844552 0.076521819 0.244015623 < [103,] 1982 0.174087562 0.026350383 0.321824742 0.086074346 0.262100779 < [104,] 1983 0.187906404 0.032299891 0.343512917 0.095205097 0.280607711 < [105,] 1984 0.201725246 0.037643248 0.365807243 0.103974737 0.299475754 < [106,] 1985 0.215544087 0.042469480 0.388618694 0.112436305 0.318651869 < [107,] 1986 0.229362929 0.046855011 0.411870847 0.120635329 0.338090528 < [108,] 1987 0.243181770 0.050864680 0.435498861 0.128610437 0.357753104 < [109,] 1988 0.257000612 0.054553115 0.459448109 0.136394171 0.377607052 < [110,] 1989 0.270819454 0.057966177 0.483672730 0.144013855 0.397625052 < [111,] 1990 0.284638295 0.061142326 0.508134265 0.151492399 0.417784191 < [112,] 1991 0.298457137 0.064113837 0.532800436 0.158849032 0.438065241 < [113,] 1992 0.312275978 0.066907850 0.557644107 0.166099922 0.458452034 --- > [1,] 1880 -0.570000000 -0.7989007 -0.3410992837 -0.71728636 -0.422713636 > [2,] 1881 -0.562857143 -0.7862639 -0.3394503795 -0.70660842 -0.419105867 > [3,] 1882 -0.555714286 -0.7736739 -0.3377546582 -0.69596060 -0.415467975 > [4,] 1883 -0.548571429 -0.7611343 -0.3360085204 -0.68534522 -0.411797641 > [5,] 1884 -0.541428571 -0.7486491 -0.3342080272 -0.67476481 -0.408092333 > [6,] 1885 -0.534285714 -0.7362226 -0.3323488643 -0.66422216 -0.404349273 > [7,] 1886 -0.527142857 -0.7238594 -0.3304263043 -0.65372029 -0.400565421 > [8,] 1887 -0.520000000 -0.7115648 -0.3284351643 -0.64326256 -0.396737440 > [9,] 1888 -0.512857143 -0.6993445 -0.3263697605 -0.63285261 -0.392861675 > [10,] 1889 -0.505714286 -0.6872047 -0.3242238599 -0.62249446 -0.388934114 > [11,] 1890 -0.498571429 -0.6751522 -0.3219906288 -0.61219250 -0.384950360 > [12,] 1891 -0.491428571 -0.6631946 -0.3196625782 -0.60195155 -0.380905594 > [13,] 1892 -0.484285714 -0.6513399 -0.3172315093 -0.59177689 -0.376794541 > [14,] 1893 -0.477142857 -0.6395973 -0.3146884583 -0.58167428 -0.372611433 > [15,] 1894 -0.470000000 -0.6279764 -0.3120236430 -0.57165002 -0.368349976 > [16,] 1895 -0.462857143 -0.6164879 -0.3092264155 -0.56171097 -0.364003318 > [17,] 1896 -0.455714286 -0.6051433 -0.3062852230 -0.55186455 -0.359564026 > [18,] 1897 -0.448571429 -0.5939553 -0.3031875831 -0.54211879 -0.355024067 > [19,] 1898 -0.441428571 -0.5829371 -0.2999200783 -0.53248233 -0.350374809 > [20,] 1899 -0.434285714 -0.5721031 -0.2964683783 -0.52296440 -0.345607030 > [21,] 1900 -0.427142857 -0.5614684 -0.2928172976 -0.51357475 -0.340710959 > [22,] 1901 -0.420000000 -0.5510491 -0.2889508980 -0.50432366 -0.335676342 > [23,] 1902 -0.412857143 -0.5408616 -0.2848526441 -0.49522175 -0.330492537 > [24,] 1903 -0.405714286 -0.5309229 -0.2805056214 -0.48627991 -0.325148662 > [25,] 1904 -0.398571429 -0.5212500 -0.2758928205 -0.47750909 -0.319633772 > [26,] 1905 -0.391428571 -0.5118597 -0.2709974894 -0.46892006 -0.313937087 > [27,] 1906 -0.384285714 -0.5027679 -0.2658035488 -0.46052317 -0.308048262 > [28,] 1907 -0.377142857 -0.4939897 -0.2602960562 -0.45232803 -0.301957682 > [29,] 1908 -0.370000000 -0.4855383 -0.2544616963 -0.44434322 -0.295656778 > [30,] 1909 -0.362857143 -0.4774250 -0.2482892691 -0.43657594 -0.289138345 > [31,] 1910 -0.355714286 -0.4696584 -0.2417701364 -0.42903175 -0.282396824 > [32,] 1911 -0.348571429 -0.4622443 -0.2348985912 -0.42171431 -0.275428543 > [33,] 1912 -0.341428571 -0.4551850 -0.2276721117 -0.41462526 -0.268231879 > [34,] 1913 -0.334285714 -0.4484800 -0.2200914777 -0.40776409 -0.260807334 > [35,] 1914 -0.327142857 -0.4421250 -0.2121607344 -0.40112820 -0.253157511 > [36,] 1915 -0.320000000 -0.4361130 -0.2038870084 -0.39471301 -0.245286995 > [37,] 1916 -0.312857143 -0.4304341 -0.1952801960 -0.38851213 -0.237202155 > [38,] 1917 -0.305714286 -0.4250760 -0.1863525523 -0.38251770 -0.228910875 > [39,] 1918 -0.298571429 -0.4200246 -0.1771182205 -0.37672060 -0.220422257 > [40,] 1919 -0.291428571 -0.4152644 -0.1675927388 -0.37111085 -0.211746298 > [41,] 1920 -0.284285714 -0.4107789 -0.1577925583 -0.36567785 -0.202893584 > [42,] 1921 -0.277142857 -0.4065511 -0.1477346004 -0.36041071 -0.193875002 > [43,] 1922 -0.270000000 -0.4025641 -0.1374358695 -0.35529850 -0.184701495 > [44,] 1923 -0.262857143 -0.3988012 -0.1269131329 -0.35033043 -0.175383852 > [45,] 1924 -0.255714286 -0.3952459 -0.1161826679 -0.34549603 -0.165932545 > [46,] 1925 -0.248571429 -0.3918828 -0.1052600744 -0.34078524 -0.156357614 > [47,] 1926 -0.241428571 -0.3886970 -0.0941601449 -0.33618857 -0.146668575 > [48,] 1927 -0.234285714 -0.3856746 -0.0828967845 -0.33169705 -0.136874376 > [49,] 1928 -0.227142857 -0.3828027 -0.0714829715 -0.32730235 -0.126983369 > [50,] 1929 -0.220000000 -0.3800693 -0.0599307484 -0.32299670 -0.117003301 > [51,] 1930 -0.212857143 -0.3774630 -0.0482512378 -0.31877296 -0.106941331 > [52,] 1931 -0.205714286 -0.3749739 -0.0364546744 -0.31462453 -0.096804042 > [53,] 1932 -0.198571429 -0.3725924 -0.0245504487 -0.31054538 -0.086597478 > [54,] 1933 -0.191428571 -0.3703100 -0.0125471577 -0.30652997 -0.076327171 > [55,] 1934 -0.184285714 -0.3681188 -0.0004526588 -0.30257325 -0.065998175 > [56,] 1935 -0.177142857 -0.3660116 0.0117258745 -0.29867061 -0.055615108 > [57,] 1936 -0.170000000 -0.3639819 0.0239818977 -0.29481782 -0.045182180 > [58,] 1937 -0.170000000 -0.3552689 0.0152688616 -0.28921141 -0.050788591 > [59,] 1938 -0.170000000 -0.3469383 0.0069383006 -0.28385110 -0.056148897 > [60,] 1939 -0.170000000 -0.3390468 -0.0009532311 -0.27877329 -0.061226710 > [61,] 1940 -0.170000000 -0.3316586 -0.0083414258 -0.27401935 -0.065980650 > [62,] 1941 -0.170000000 -0.3248458 -0.0151542191 -0.26963565 -0.070364348 > [63,] 1942 -0.170000000 -0.3186875 -0.0213124962 -0.26567310 -0.074326897 > [64,] 1943 -0.170000000 -0.3132682 -0.0267318303 -0.26218603 -0.077813972 > [65,] 1944 -0.170000000 -0.3086744 -0.0313255619 -0.25923019 -0.080769813 > [66,] 1945 -0.170000000 -0.3049906 -0.0350093787 -0.25685983 -0.083140168 > [67,] 1946 -0.170000000 -0.3022928 -0.0377072467 -0.25512389 -0.084876113 > [68,] 1947 -0.170000000 -0.3006419 -0.0393580695 -0.25406166 -0.085938337 > [69,] 1948 -0.170000000 -0.3000780 -0.0399219767 -0.25369882 -0.086301183 > [70,] 1949 -0.170000000 -0.3006151 -0.0393848898 -0.25404441 -0.085955594 > [71,] 1950 -0.170000000 -0.3022398 -0.0377602233 -0.25508980 -0.084910201 > [72,] 1951 -0.170000000 -0.3049127 -0.0350872623 -0.25680972 -0.083190282 > [73,] 1952 -0.170000000 -0.3085733 -0.0314266558 -0.25916514 -0.080834862 > [74,] 1953 -0.170000000 -0.3131458 -0.0268541535 -0.26210732 -0.077892681 > [75,] 1954 -0.170000000 -0.3185461 -0.0214539408 -0.26558209 -0.074417909 > [76,] 1955 -0.170000000 -0.3246873 -0.0153126807 -0.26953369 -0.070466310 > [77,] 1956 -0.170000000 -0.3314851 -0.0085148970 -0.27390773 -0.066092271 > [78,] 1957 -0.170000000 -0.3388601 -0.0011398598 -0.27865320 -0.061346797 > [79,] 1958 -0.170000000 -0.3467402 0.0067401824 -0.28372362 -0.056276377 > [80,] 1959 -0.170000000 -0.3550607 0.0150607304 -0.28907749 -0.050922513 > [81,] 1960 -0.170000000 -0.3637650 0.0237650445 -0.29467829 -0.045321714 > [82,] 1961 -0.170000000 -0.3728037 0.0328037172 -0.30049423 -0.039505772 > [83,] 1962 -0.170000000 -0.3821340 0.0421340134 -0.30649781 -0.033502185 > [84,] 1963 -0.170000000 -0.3917191 0.0517191202 -0.31266536 -0.027334640 > [85,] 1964 -0.170000000 -0.4015274 0.0615273928 -0.31897650 -0.021023499 > [86,] 1965 -0.159285714 -0.3788752 0.0603037544 -0.30058075 -0.017990680 > [87,] 1966 -0.148571429 -0.3567712 0.0596282943 -0.28253772 -0.014605137 > [88,] 1967 -0.137857143 -0.3353102 0.0595958975 -0.26490847 -0.010805813 > [89,] 1968 -0.127142857 -0.3146029 0.0603171930 -0.24776419 -0.006521525 > [90,] 1969 -0.116428571 -0.2947761 0.0619189162 -0.23118642 -0.001670726 > [91,] 1970 -0.105714286 -0.2759711 0.0645424939 -0.21526616 0.003837587 > [92,] 1971 -0.095000000 -0.2583398 0.0683398431 -0.20010116 0.010101164 > [93,] 1972 -0.084285714 -0.2420369 0.0734654391 -0.18579083 0.017219402 > [94,] 1973 -0.073571429 -0.2272072 0.0800643002 -0.17242847 0.025285614 > [95,] 1974 -0.062857143 -0.2139711 0.0882568427 -0.16009157 0.034377282 > [96,] 1975 -0.052142857 -0.2024090 0.0981233226 -0.14883176 0.044546046 > [97,] 1976 -0.041428571 -0.1925491 0.1096919157 -0.13866718 0.055810037 > [98,] 1977 -0.030714286 -0.1843628 0.1229342326 -0.12957956 0.068150987 > [99,] 1978 -0.020000000 -0.1777698 0.1377698370 -0.12151714 0.081517138 > [100,] 1979 -0.009285714 -0.1726496 0.1540781875 -0.11440236 0.095830930 > [101,] 1980 0.001428571 -0.1688571 0.1717142023 -0.10814187 0.110999008 > [102,] 1981 0.012142857 -0.1662377 0.1905233955 -0.10263625 0.126921969 > [103,] 1982 0.022857143 -0.1646396 0.2103538775 -0.09778779 0.143502079 > [104,] 1983 0.033571429 -0.1639214 0.2310642722 -0.09350551 0.160648370 > [105,] 1984 0.044285714 -0.1639565 0.2525279044 -0.08970790 0.178279332 > [106,] 1985 0.055000000 -0.1646342 0.2746342071 -0.08632382 0.196323821 > [107,] 1986 0.065714286 -0.1658598 0.2972883534 -0.08329225 0.214720820 > [108,] 1987 0.076428571 -0.1675528 0.3204099260 -0.08056144 0.233418585 > [109,] 1988 0.087142857 -0.1696455 0.3439311798 -0.07808781 0.252373526 > [110,] 1989 0.097857143 -0.1720809 0.3677952332 -0.07583476 0.271549041 > [111,] 1990 0.108571429 -0.1748115 0.3919543697 -0.07377157 0.290914428 > [112,] 1991 0.119285714 -0.1777971 0.4163685288 -0.07187248 0.310443909 > [113,] 1992 0.130000000 -0.1810040 0.4410040109 -0.07011580 0.330115800 343,455c310,422 < [1,] 1880 -0.393247953 -0.693805062 -0.092690844 -0.572302393 -0.214193513 < [2,] 1881 -0.389244486 -0.676297026 -0.102191945 -0.560253689 -0.218235282 < [3,] 1882 -0.385241019 -0.659006413 -0.111475624 -0.548334514 -0.222147524 < [4,] 1883 -0.381237552 -0.641966465 -0.120508639 -0.536564669 -0.225910434 < [5,] 1884 -0.377234084 -0.625216717 -0.129251452 -0.524967709 -0.229500459 < [6,] 1885 -0.373230617 -0.608804280 -0.137656955 -0.513571700 -0.232889535 < [7,] 1886 -0.369227150 -0.592785330 -0.145668970 -0.502410107 -0.236044193 < [8,] 1887 -0.365223683 -0.577226782 -0.153220584 -0.491522795 -0.238924571 < [9,] 1888 -0.361220216 -0.562208058 -0.160232373 -0.480957079 -0.241483352 < [10,] 1889 -0.357216749 -0.547822773 -0.166610724 -0.470768729 -0.243664768 < [11,] 1890 -0.353213282 -0.534179978 -0.172246585 -0.461022711 -0.245403852 < [12,] 1891 -0.349209814 -0.521404410 -0.177015219 -0.451793336 -0.246626293 < [13,] 1892 -0.345206347 -0.509634924 -0.180777771 -0.443163327 -0.247249368 < [14,] 1893 -0.341202880 -0.499020116 -0.183385645 -0.435221208 -0.247184553 < [15,] 1894 -0.337199413 -0.489710224 -0.184688602 -0.428056482 -0.246342344 < [16,] 1895 -0.333195946 -0.481845064 -0.184546828 -0.421752442 -0.244639450 < [17,] 1896 -0.329192479 -0.475539046 -0.182845912 -0.416377249 -0.242007708 < [18,] 1897 -0.325189012 -0.470866120 -0.179511904 -0.411974957 -0.238403066 < [19,] 1898 -0.321185545 -0.467848651 -0.174522438 -0.408558891 -0.233812198 < [20,] 1899 -0.317182077 -0.466453839 -0.167910316 -0.406109508 -0.228254646 < [21,] 1900 -0.313178610 -0.466598933 -0.159758288 -0.404577513 -0.221779708 < [22,] 1901 -0.309175143 -0.468163434 -0.150186852 -0.403891117 -0.214459169 < [23,] 1902 -0.305171676 -0.471004432 -0.139338920 -0.403965184 -0.206378168 < [24,] 1903 -0.301168209 -0.474971184 -0.127365234 -0.404709910 -0.197626508 < [25,] 1904 -0.297164742 -0.479916458 -0.114413025 -0.406037582 -0.188291901 < [26,] 1905 -0.293161275 -0.485703869 -0.100618680 -0.407866950 -0.178455599 < [27,] 1906 -0.289157807 -0.492211633 -0.086103982 -0.410125463 -0.168190151 < [28,] 1907 -0.285154340 -0.499333719 -0.070974961 -0.412749954 -0.157558727 < [29,] 1908 -0.281150873 -0.506979351 -0.055322395 -0.415686342 -0.146615404 < [30,] 1909 -0.268996808 -0.484727899 -0.053265717 -0.397516841 -0.140476775 < [31,] 1910 -0.256842743 -0.462766683 -0.050918803 -0.379520246 -0.134165240 < [32,] 1911 -0.244688678 -0.441139176 -0.048238181 -0.361722455 -0.127654901 < [33,] 1912 -0.232534613 -0.419896002 -0.045173225 -0.344153628 -0.120915598 < [34,] 1913 -0.220380548 -0.399095811 -0.041665286 -0.326848704 -0.113912392 < [35,] 1914 -0.208226483 -0.378805976 -0.037646990 -0.309847821 -0.106605145 < [36,] 1915 -0.196072418 -0.359102922 -0.033041915 -0.293196507 -0.098948329 < [37,] 1916 -0.183918353 -0.340071771 -0.027764935 -0.276945475 -0.090891232 < [38,] 1917 -0.171764288 -0.321804943 -0.021723634 -0.261149781 -0.082378795 < [39,] 1918 -0.159610223 -0.304399275 -0.014821172 -0.245867116 -0.073353330 < [40,] 1919 -0.147456158 -0.287951368 -0.006960949 -0.231155030 -0.063757286 < [41,] 1920 -0.135302093 -0.272551143 0.001946957 -0.217067092 -0.053537094 < [42,] 1921 -0.123148028 -0.258274127 0.011978071 -0.203648297 -0.042647760 < [43,] 1922 -0.110993963 -0.245173645 0.023185718 -0.190930411 -0.031057516 < [44,] 1923 -0.098839898 -0.233274545 0.035594749 -0.178928240 -0.018751557 < [45,] 1924 -0.086685833 -0.222570067 0.049198400 -0.167637754 -0.005733912 < [46,] 1925 -0.074531768 -0.213022703 0.063959166 -0.157036610 0.007973073 < [47,] 1926 -0.062377703 -0.204568828 0.079813422 -0.147086903 0.022331496 < [48,] 1927 -0.050223638 -0.197125838 0.096678562 -0.137739423 0.037292146 < [49,] 1928 -0.038069573 -0.190600095 0.114460948 -0.128938384 0.052799237 < [50,] 1929 -0.025915508 -0.184894207 0.133063191 -0.120625768 0.068794751 < [51,] 1930 -0.013761444 -0.179912750 0.152389863 -0.112744726 0.085221839 < [52,] 1931 -0.001607379 -0.175566138 0.172351381 -0.105241887 0.102027130 < [53,] 1932 0.010546686 -0.171772831 0.192866204 -0.098068675 0.119162048 < [54,] 1933 0.022700751 -0.168460244 0.213861747 -0.091181848 0.136583351 < [55,] 1934 0.034854816 -0.165564766 0.235274399 -0.084543511 0.154253144 < [56,] 1935 0.047008881 -0.163031246 0.257049009 -0.078120807 0.172138570 < [57,] 1936 0.059162946 -0.160812199 0.279138092 -0.071885448 0.190211340 < [58,] 1937 0.054383856 -0.155656272 0.264423984 -0.070745832 0.179513544 < [59,] 1938 0.049604765 -0.150814817 0.250024348 -0.069793562 0.169003093 < [60,] 1939 0.044825675 -0.146335320 0.235986670 -0.069056925 0.158708275 < [61,] 1940 0.040046585 -0.142272933 0.222366102 -0.068568777 0.148661946 < [62,] 1941 0.035267494 -0.138691265 0.209226254 -0.068367014 0.138902002 < [63,] 1942 0.030488404 -0.135662903 0.196639710 -0.068494879 0.129471686 < [64,] 1943 0.025709313 -0.133269386 0.184688012 -0.069000947 0.120419573 < [65,] 1944 0.020930223 -0.131600299 0.173460744 -0.069938588 0.111799033 < [66,] 1945 0.016151132 -0.130751068 0.163053332 -0.071364652 0.103666917 < [67,] 1946 0.011372042 -0.130819083 0.153563167 -0.073337158 0.096081242 < [68,] 1947 0.006592951 -0.131897983 0.145083886 -0.075911890 0.089097793 < [69,] 1948 0.001813861 -0.134070373 0.137698095 -0.079138060 0.082765782 < [70,] 1949 -0.002965230 -0.137399877 0.131469418 -0.083053571 0.077123112 < [71,] 1950 -0.007744320 -0.141924001 0.126435361 -0.087680768 0.072192128 < [72,] 1951 -0.012523410 -0.147649510 0.122602689 -0.093023679 0.067976858 < [73,] 1952 -0.017302501 -0.154551551 0.119946549 -0.099067500 0.064462498 < [74,] 1953 -0.022081591 -0.162576801 0.118413618 -0.105780463 0.061617281 < [75,] 1954 -0.026860682 -0.171649733 0.117928369 -0.113117575 0.059396211 < [76,] 1955 -0.031639772 -0.181680427 0.118400882 -0.121025265 0.057745721 < [77,] 1956 -0.036418863 -0.192572281 0.119734555 -0.129445984 0.056608259 < [78,] 1957 -0.041197953 -0.204228457 0.121832550 -0.138322042 0.055926136 < [79,] 1958 -0.045977044 -0.216556537 0.124602449 -0.147598382 0.055644294 < [80,] 1959 -0.050756134 -0.229471397 0.127959128 -0.157224290 0.055712022 < [81,] 1960 -0.055535225 -0.242896613 0.131826164 -0.167154239 0.056083790 < [82,] 1961 -0.060314315 -0.256764812 0.136136182 -0.177348092 0.056719462 < [83,] 1962 -0.065093405 -0.271017346 0.140830535 -0.187770909 0.057584098 < [84,] 1963 -0.069872496 -0.285603587 0.145858595 -0.198392529 0.058647537 < [85,] 1964 -0.074651586 -0.300480064 0.151176891 -0.209187055 0.059883882 < [86,] 1965 -0.060832745 -0.275012124 0.153346634 -0.188428358 0.066762869 < [87,] 1966 -0.047013903 -0.250067729 0.156039922 -0.167981559 0.073953753 < [88,] 1967 -0.033195062 -0.225737656 0.159347533 -0.147900737 0.081510614 < [89,] 1968 -0.019376220 -0.202127937 0.163375497 -0.128249061 0.089496621 < [90,] 1969 -0.005557378 -0.179360353 0.168245596 -0.109099079 0.097984322 < [91,] 1970 0.008261463 -0.157571293 0.174094219 -0.090532045 0.107054971 < [92,] 1971 0.022080305 -0.136907986 0.181068596 -0.072635669 0.116796279 < [93,] 1972 0.035899146 -0.117521176 0.189319469 -0.055499756 0.127298049 < [94,] 1973 0.049717988 -0.099553773 0.198989749 -0.039209443 0.138645419 < [95,] 1974 0.063536830 -0.083126277 0.210199936 -0.023836517 0.150910176 < [96,] 1975 0.077355671 -0.068321437 0.223032779 -0.009430275 0.164141617 < [97,] 1976 0.091174513 -0.055172054 0.237521080 0.003989742 0.178359283 < [98,] 1977 0.104993354 -0.043655763 0.253642472 0.016436858 0.193549851 < [99,] 1978 0.118812196 -0.033698615 0.271323007 0.027955127 0.209669265 < [100,] 1979 0.132631038 -0.025186198 0.290448273 0.038612710 0.226649365 < [101,] 1980 0.146449879 -0.017978697 0.310878456 0.048492899 0.244406859 < [102,] 1981 0.160268721 -0.011925874 0.332463316 0.057685199 0.262852243 < [103,] 1982 0.174087562 -0.006879134 0.355054259 0.066278133 0.281896992 < [104,] 1983 0.187906404 -0.002699621 0.378512429 0.074354424 0.301458384 < [105,] 1984 0.201725246 0.000737403 0.402713088 0.081988382 0.321462109 < [106,] 1985 0.215544087 0.003540988 0.427547186 0.089244975 0.341843199 < [107,] 1986 0.229362929 0.005804749 0.452921108 0.096179971 0.362545886 < [108,] 1987 0.243181770 0.007608108 0.478755433 0.102840688 0.383522853 < [109,] 1988 0.257000612 0.009017980 0.504983244 0.109266987 0.404734237 < [110,] 1989 0.270819454 0.010090540 0.531548367 0.115492336 0.426146571 < [111,] 1990 0.284638295 0.010872901 0.558403689 0.121544800 0.447731790 < [112,] 1991 0.298457137 0.011404596 0.585509677 0.127447933 0.469466340 < [113,] 1992 0.312275978 0.011718869 0.612833087 0.133221539 0.491330418 --- > [1,] 1880 -0.257692308 -3.867500e-01 -0.128634653 -0.340734568 -0.174650048 > [2,] 1881 -0.250769231 -3.767293e-01 -0.124809149 -0.331818355 -0.169720107 > [3,] 1882 -0.243846154 -3.667351e-01 -0.120957249 -0.322919126 -0.164773181 > [4,] 1883 -0.236923077 -3.567692e-01 -0.117076923 -0.314038189 -0.159807965 > [5,] 1884 -0.230000000 -3.468340e-01 -0.113165951 -0.305176970 -0.154823030 > [6,] 1885 -0.223076923 -3.369319e-01 -0.109221900 -0.296337036 -0.149816810 > [7,] 1886 -0.216153846 -3.270656e-01 -0.105242105 -0.287520102 -0.144787590 > [8,] 1887 -0.209230769 -3.172379e-01 -0.101223643 -0.278728048 -0.139733491 > [9,] 1888 -0.202307692 -3.074521e-01 -0.097163311 -0.269962936 -0.134652449 > [10,] 1889 -0.195384615 -2.977116e-01 -0.093057593 -0.261227027 -0.129542204 > [11,] 1890 -0.188461539 -2.880204e-01 -0.088902637 -0.252522800 -0.124400277 > [12,] 1891 -0.181538462 -2.783827e-01 -0.084694220 -0.243852973 -0.119223950 > [13,] 1892 -0.174615385 -2.688030e-01 -0.080427720 -0.235220519 -0.114010250 > [14,] 1893 -0.167692308 -2.592865e-01 -0.076098083 -0.226628691 -0.108755924 > [15,] 1894 -0.160769231 -2.498387e-01 -0.071699793 -0.218081038 -0.103457424 > [16,] 1895 -0.153846154 -2.404655e-01 -0.067226847 -0.209581422 -0.098110886 > [17,] 1896 -0.146923077 -2.311734e-01 -0.062672732 -0.201134035 -0.092712119 > [18,] 1897 -0.140000000 -2.219696e-01 -0.058030409 -0.192743405 -0.087256595 > [19,] 1898 -0.133076923 -2.128615e-01 -0.053292314 -0.184414399 -0.081739447 > [20,] 1899 -0.126153846 -2.038573e-01 -0.048450366 -0.176152218 -0.076155475 > [21,] 1900 -0.119230769 -1.949655e-01 -0.043496005 -0.167962369 -0.070499170 > [22,] 1901 -0.112307692 -1.861951e-01 -0.038420244 -0.159850635 -0.064764750 > [23,] 1902 -0.105384615 -1.775555e-01 -0.033213760 -0.151823015 -0.058946216 > [24,] 1903 -0.098461539 -1.690561e-01 -0.027867017 -0.143885645 -0.053037432 > [25,] 1904 -0.091538462 -1.607065e-01 -0.022370423 -0.136044696 -0.047032227 > [26,] 1905 -0.084615385 -1.525162e-01 -0.016714535 -0.128306245 -0.040924524 > [27,] 1906 -0.077692308 -1.444943e-01 -0.010890287 -0.120676126 -0.034708490 > [28,] 1907 -0.070769231 -1.366492e-01 -0.004889253 -0.113159760 -0.028378702 > [29,] 1908 -0.063846154 -1.289884e-01 0.001296074 -0.105761977 -0.021930331 > [30,] 1909 -0.056923077 -1.215182e-01 0.007672008 -0.098486840 -0.015359314 > [31,] 1910 -0.050000000 -1.142434e-01 0.014243419 -0.091337484 -0.008662516 > [32,] 1911 -0.043076923 -1.071674e-01 0.021013527 -0.084315978 -0.001837868 > [33,] 1912 -0.036153846 -1.002914e-01 0.027983751 -0.077423239 0.005115546 > [34,] 1913 -0.029230769 -9.361519e-02 0.035153653 -0.070658982 0.012197443 > [35,] 1914 -0.022307692 -8.713634e-02 0.042520952 -0.064021740 0.019406355 > [36,] 1915 -0.015384615 -8.085086e-02 0.050081630 -0.057508928 0.026739697 > [37,] 1916 -0.008461538 -7.475318e-02 0.057830107 -0.051116955 0.034193878 > [38,] 1917 -0.001538462 -6.883640e-02 0.065759473 -0.044841376 0.041764453 > [39,] 1918 0.005384615 -6.309252e-02 0.073861755 -0.038677059 0.049446290 > [40,] 1919 0.012307692 -5.751281e-02 0.082128191 -0.032618368 0.057233753 > [41,] 1920 0.019230769 -5.208797e-02 0.090549507 -0.026659334 0.065120873 > [42,] 1921 0.026153846 -4.680847e-02 0.099116161 -0.020793819 0.073101511 > [43,] 1922 0.033076923 -4.166472e-02 0.107818567 -0.015015652 0.081169499 > [44,] 1923 0.040000000 -3.664727e-02 0.116647271 -0.009318753 0.089318753 > [45,] 1924 0.046923077 -3.174694e-02 0.125593095 -0.003697214 0.097543368 > [46,] 1925 0.053846154 -2.695494e-02 0.134647244 0.001854623 0.105837685 > [47,] 1926 0.060769231 -2.226292e-02 0.143801377 0.007342124 0.114196337 > [48,] 1927 0.067692308 -1.766304e-02 0.153047656 0.012770335 0.122614280 > [49,] 1928 0.074615385 -1.314799e-02 0.162378762 0.018143964 0.131086806 > [50,] 1929 0.081538462 -8.710982e-03 0.171787905 0.023467379 0.139609544 > [51,] 1930 0.088461538 -4.345738e-03 0.181268815 0.028744616 0.148178461 > [52,] 1931 0.095384615 -4.649065e-05 0.190815721 0.033979388 0.156789843 > [53,] 1932 0.102307692 4.192055e-03 0.200423329 0.039175101 0.165440284 > [54,] 1933 0.109230769 8.374747e-03 0.210086792 0.044334874 0.174126664 > [55,] 1934 0.116153846 1.250601e-02 0.219801679 0.049461559 0.182846134 > [56,] 1935 0.123076923 1.658990e-02 0.229563945 0.054557757 0.191596090 > [57,] 1936 0.130000000 2.063010e-02 0.239369902 0.059625842 0.200374158 > [58,] 1937 0.130000000 2.554264e-02 0.234457361 0.062786820 0.197213180 > [59,] 1938 0.130000000 3.023953e-02 0.229760466 0.065809042 0.194190958 > [60,] 1939 0.130000000 3.468890e-02 0.225311102 0.068671989 0.191328011 > [61,] 1940 0.130000000 3.885447e-02 0.221145527 0.071352331 0.188647669 > [62,] 1941 0.130000000 4.269563e-02 0.217304372 0.073823926 0.186176074 > [63,] 1942 0.130000000 4.616776e-02 0.213832244 0.076058070 0.183941930 > [64,] 1943 0.130000000 4.922326e-02 0.210776742 0.078024136 0.181975864 > [65,] 1944 0.130000000 5.181327e-02 0.208186727 0.079690683 0.180309317 > [66,] 1945 0.130000000 5.389026e-02 0.206109736 0.081027125 0.178972875 > [67,] 1946 0.130000000 5.541136e-02 0.204588637 0.082005877 0.177994123 > [68,] 1947 0.130000000 5.634212e-02 0.203657879 0.082604774 0.177395226 > [69,] 1948 0.130000000 5.666006e-02 0.203339939 0.082809352 0.177190648 > [70,] 1949 0.130000000 5.635724e-02 0.203642757 0.082614504 0.177385496 > [71,] 1950 0.130000000 5.544123e-02 0.204558768 0.082025096 0.177974904 > [72,] 1951 0.130000000 5.393418e-02 0.206065824 0.081055380 0.178944620 > [73,] 1952 0.130000000 5.187027e-02 0.208129729 0.079727358 0.180272642 > [74,] 1953 0.130000000 4.929223e-02 0.210707774 0.078068513 0.181931487 > [75,] 1954 0.130000000 4.624751e-02 0.213752495 0.076109385 0.183890615 > [76,] 1955 0.130000000 4.278497e-02 0.217215029 0.073881414 0.186118586 > [77,] 1956 0.130000000 3.895228e-02 0.221047722 0.071415265 0.188584735 > [78,] 1957 0.130000000 3.479412e-02 0.225205878 0.068739695 0.191260305 > [79,] 1958 0.130000000 3.035124e-02 0.229648764 0.065880916 0.194119084 > [80,] 1959 0.130000000 2.565999e-02 0.234340014 0.062862328 0.197137672 > [81,] 1960 0.130000000 2.075236e-02 0.239247637 0.059704514 0.200295486 > [82,] 1961 0.130000000 1.565622e-02 0.244343776 0.056425398 0.203574602 > [83,] 1962 0.130000000 1.039566e-02 0.249604337 0.053040486 0.206959514 > [84,] 1963 0.130000000 4.991436e-03 0.255008564 0.049563131 0.210436869 > [85,] 1964 0.130000000 -5.386147e-04 0.260538615 0.046004815 0.213995185 > [86,] 1965 0.143076923 1.926909e-02 0.266884757 0.063412665 0.222741181 > [87,] 1966 0.156153846 3.876772e-02 0.273539971 0.080621643 0.231686050 > [88,] 1967 0.169230769 5.790379e-02 0.280557753 0.097597325 0.240864213 > [89,] 1968 0.182307692 7.661491e-02 0.288000479 0.114299577 0.250315807 > [90,] 1969 0.195384615 9.482963e-02 0.295939602 0.130682422 0.260086809 > [91,] 1970 0.208461538 1.124682e-01 0.304454863 0.146694551 0.270228526 > [92,] 1971 0.221538461 1.294450e-01 0.313631914 0.162280850 0.280796073 > [93,] 1972 0.234615385 1.456729e-01 0.323557850 0.177385278 0.291845491 > [94,] 1973 0.247692308 1.610702e-01 0.334314435 0.191955225 0.303429390 > [95,] 1974 0.260769231 1.755689e-01 0.345969561 0.205947004 0.315591457 > [96,] 1975 0.273846154 1.891238e-01 0.358568478 0.219331501 0.328360807 > [97,] 1976 0.286923077 2.017191e-01 0.372127073 0.232098492 0.341747662 > [98,] 1977 0.300000000 2.133707e-01 0.386629338 0.244258277 0.355741722 > [99,] 1978 0.313076923 2.241239e-01 0.402029922 0.255840039 0.370313807 > [100,] 1979 0.326153846 2.340468e-01 0.418260863 0.266887506 0.385420186 > [101,] 1980 0.339230769 2.432212e-01 0.435240360 0.277453314 0.401008224 > [102,] 1981 0.352307692 2.517341e-01 0.452881314 0.287593508 0.417021876 > [103,] 1982 0.365384615 2.596711e-01 0.471098085 0.297363192 0.433406039 > [104,] 1983 0.378461538 2.671121e-01 0.489810964 0.306813654 0.450109423 > [105,] 1984 0.391538461 2.741284e-01 0.508948530 0.315990851 0.467086072 > [106,] 1985 0.404615384 2.807823e-01 0.528448443 0.324934896 0.484295873 > [107,] 1986 0.417692308 2.871274e-01 0.548257238 0.333680190 0.501704425 > [108,] 1987 0.430769231 2.932089e-01 0.568329576 0.342255907 0.519282554 > [109,] 1988 0.443846154 2.990650e-01 0.588627259 0.350686626 0.537005682 > [110,] 1989 0.456923077 3.047279e-01 0.609118218 0.358992981 0.554853173 > [111,] 1990 0.470000000 3.102244e-01 0.629775550 0.367192284 0.572807716 > [112,] 1991 0.483076923 3.155772e-01 0.650576667 0.375299067 0.590854778 > [113,] 1992 0.496153846 3.208051e-01 0.671502569 0.383325558 0.608982134 478,480d444 < Warning message: < In cobs(year, temp, knots.add = TRUE, degree = 1, constraint = "none", : < drqssbc2(): Not all flags are normal (== 1), ifl : 22 490,492d453 < Warning message: < In cobs(year, temp, nknots = 9, knots.add = TRUE, degree = 1, constraint = "none", : < drqssbc2(): Not all flags are normal (== 1), ifl : 22 496,499d456 < < **** ERROR in algorithm: ifl = 22 < < 502,503c459,460 < coef[1:5]: -0.39324840, -0.28115087, 0.05916295, -0.07465159, 0.31227753 < R^2 = 73.22% ; empirical tau (over all): 63/113 = 0.5575221 (target tau= 0.5) --- > coef[1:5]: -0.40655906, -0.31473700, 0.05651823, -0.05681818, 0.28681956 > R^2 = 72.56% ; empirical tau (over all): 54/113 = 0.4778761 (target tau= 0.5) 509,512d465 < < **** ERROR in algorithm: ifl = 22 < < 515,517d467 < Warning message: < In cobs(year, temp, nknots = length(a50$knots), knots = a50$knot, : < drqssbc2(): Not all flags are normal (== 1), ifl : 22 522,525d471 < < **** ERROR in algorithm: ifl = 22 < < 528,530d473 < Warning message: < In cobs(year, temp, nknots = length(a50$knots), knots = a50$knot, : < drqssbc2(): Not all flags are normal (== 1), ifl : 22 532,534c475 < [1] 1 2 9 10 17 18 20 21 22 23 26 27 35 36 42 47 48 49 52 < [20] 53 58 59 61 62 63 64 65 68 73 74 78 79 80 81 82 83 84 88 < [39] 90 91 94 98 100 101 102 104 108 109 111 112 --- > [1] 10 18 21 22 47 61 68 74 78 79 102 111 536,539c477 < [1] 3 4 5 6 7 8 11 12 13 14 15 16 19 24 25 28 29 30 31 < [20] 32 33 34 37 38 39 40 41 43 44 45 46 50 51 54 55 56 57 60 < [39] 66 67 69 70 71 72 75 76 77 85 86 87 89 92 93 95 96 97 99 < [58] 103 105 106 107 110 113 --- > [1] 5 8 25 38 39 50 54 77 85 97 113 Running ‘wind.R’ [6s/7s] Running the tests in ‘tests/ex1.R’ failed. Complete output: > #### OOps! Running this in 'CMD check' or in *R* __for the first time__ > #### ===== gives a wrong result (at the end) than when run a 2nd time > ####-- problem disappears with introduction of if (psw) call ... in Fortran > > suppressMessages(library(cobs)) > options(digits = 6) > if(!dev.interactive(orNone=TRUE)) pdf("ex1.pdf") > > source(system.file("util.R", package = "cobs")) > > ## Simple example from example(cobs) > set.seed(908) > x <- seq(-1,1, len = 50) > f.true <- pnorm(2*x) > y <- f.true + rnorm(50)/10 > ## specify constraints (boundary conditions) > con <- rbind(c( 1,min(x),0), + c(-1,max(x),1), + c( 0, 0, 0.5)) > ## obtain the median *regression* B-spline using automatically selected knots > coR <- cobs(x,y,constraint = "increase", pointwise = con) qbsks2(): Performing general knot selection ... Deleting unnecessary knots ... Warning message: In cobs(x, y, constraint = "increase", pointwise = con) : drqssbc2(): Not all flags are normal (== 1), ifl : 21 > summaryCobs(coR) List of 24 $ call : language cobs(x = x, y = y, constraint = "increase", pointwise = con) $ tau : num 0.5 $ degree : num 2 $ constraint : chr "increase" $ ic : chr "AIC" $ pointwise : num [1:3, 1:3] 1 -1 0 -1 1 0 0 1 0.5 $ select.knots : logi TRUE $ select.lambda: logi FALSE $ x : num [1:50] -1 -0.959 -0.918 -0.878 -0.837 ... $ y : num [1:50] 0.2254 0.0916 0.0803 -0.0272 -0.0454 ... $ resid : num [1:50] 0.148 0.019 0.0105 -0.0962 -0.1156 ... $ fitted : num [1:50] 0.0774 0.0726 0.0698 0.069 0.0702 ... $ coef : num [1:4] 0.0774 0.0226 0.8067 1.074 $ knots : num [1:3] -1 -0.224 1 $ k0 : num 4 $ k : num 4 $ x.ps :Formal class 'matrix.csr' [package "SparseM"] with 4 slots $ SSy : num 6.19 $ lambda : num 0 $ icyc : int 1 $ ifl : int 21 $ pp.lambda : NULL $ pp.sic : NULL $ i.mask : NULL cb.lo ci.lo fit ci.up cb.up 1 -0.02569206 0.0153529 0.0773974 0.139442 0.180487 2 -0.02467377 0.0149258 0.0747853 0.134645 0.174244 3 -0.02343992 0.0148223 0.0726602 0.130498 0.168760 4 -0.02198644 0.0150449 0.0710223 0.127000 0.164031 5 -0.02030765 0.0155971 0.0698714 0.124146 0.160050 6 -0.01839614 0.0164832 0.0692075 0.121932 0.156811 7 -0.01624274 0.0177089 0.0690308 0.120353 0.154304 8 -0.01383648 0.0192806 0.0693410 0.119401 0.152519 9 -0.01116467 0.0212061 0.0701384 0.119071 0.151441 10 -0.00821304 0.0234939 0.0714227 0.119352 0.151059 11 -0.00496594 0.0261535 0.0731942 0.120235 0.151354 12 -0.00140661 0.0291949 0.0754527 0.121711 0.152312 13 0.00248257 0.0326287 0.0781983 0.123768 0.153914 14 0.00671972 0.0364659 0.0814309 0.126396 0.156142 15 0.01132316 0.0407175 0.0851506 0.129584 0.158978 16 0.01631107 0.0453944 0.0893573 0.133320 0.162404 17 0.02170124 0.0505073 0.0940511 0.137595 0.166401 18 0.02751079 0.0560665 0.0992320 0.142397 0.170953 19 0.03375595 0.0620819 0.1048999 0.147718 0.176044 20 0.04045190 0.0685624 0.1110549 0.153547 0.181658 21 0.04761262 0.0755166 0.1176969 0.159877 0.187781 22 0.05525079 0.0829521 0.1248260 0.166700 0.194401 23 0.06337769 0.0908757 0.1324422 0.174009 0.201507 24 0.07200318 0.0992932 0.1405454 0.181798 0.209088 25 0.08113560 0.1082098 0.1491357 0.190062 0.217136 26 0.09078179 0.1176295 0.1582130 0.198797 0.225644 27 0.10094701 0.1275555 0.1677774 0.207999 0.234608 28 0.11163490 0.1379900 0.1778288 0.217668 0.244023 29 0.12284746 0.1489342 0.1883674 0.227801 0.253887 30 0.13458491 0.1603882 0.1993929 0.238398 0.264201 31 0.14684569 0.1723511 0.2109056 0.249460 0.274965 32 0.15962625 0.1848207 0.2229052 0.260990 0.286184 33 0.17292100 0.1977938 0.2353920 0.272990 0.297863 34 0.18672210 0.2112655 0.2483658 0.285466 0.310009 35 0.20101931 0.2252297 0.2618267 0.298424 0.322634 36 0.21579978 0.2396787 0.2757746 0.311870 0.335749 37 0.23104789 0.2546031 0.2902096 0.325816 0.349371 38 0.24674505 0.2699916 0.3051316 0.340272 0.363518 39 0.26286963 0.2858313 0.3205407 0.355250 0.378212 40 0.27927345 0.3019880 0.3363239 0.370660 0.393374 41 0.29546082 0.3179864 0.3520365 0.386087 0.408612 42 0.31139379 0.3337855 0.3676333 0.401481 0.423873 43 0.32708550 0.3493933 0.3831143 0.416835 0.439143 44 0.34254943 0.3648179 0.3984794 0.432141 0.454409 45 0.35779910 0.3800674 0.4137287 0.447390 0.469658 46 0.37284780 0.3951499 0.4288622 0.462574 0.484877 47 0.38770842 0.4100730 0.4438798 0.477687 0.500051 48 0.40239320 0.4248442 0.4587815 0.492719 0.515170 49 0.41691367 0.4394703 0.4735674 0.507665 0.530221 50 0.43128050 0.4539579 0.4882375 0.522517 0.545195 51 0.44550348 0.4683128 0.5027918 0.537271 0.560080 52 0.45959144 0.4825403 0.5172301 0.551920 0.574869 53 0.47355229 0.4966451 0.5315527 0.566460 0.589553 54 0.48739298 0.5106315 0.5457594 0.580887 0.604126 55 0.50111956 0.5245032 0.5598503 0.595197 0.618581 56 0.51473718 0.5382631 0.5738253 0.609388 0.632913 57 0.52825014 0.5519139 0.5876845 0.623455 0.647119 58 0.54166189 0.5654577 0.6014278 0.637398 0.661194 59 0.55497510 0.5788960 0.6150553 0.651215 0.675136 60 0.56819166 0.5922301 0.6285670 0.664904 0.688942 61 0.58131273 0.6054605 0.6419628 0.678465 0.702613 62 0.59433873 0.6185876 0.6552428 0.691898 0.716147 63 0.60726940 0.6316113 0.6684069 0.705203 0.729544 64 0.62010376 0.6445308 0.6814552 0.718380 0.742807 65 0.63284018 0.6573453 0.6943876 0.731430 0.755935 66 0.64547632 0.6700533 0.7072042 0.744355 0.768932 67 0.65800921 0.6826530 0.7199050 0.757157 0.781801 68 0.67043520 0.6951423 0.7324899 0.769838 0.794545 69 0.68274995 0.7075185 0.7449590 0.782400 0.807168 70 0.69494850 0.7197786 0.7573122 0.794846 0.819676 71 0.70702523 0.7319193 0.7695496 0.807180 0.832074 72 0.71897385 0.7439368 0.7816712 0.819406 0.844369 73 0.73078747 0.7558269 0.7936769 0.831527 0.856566 74 0.74245861 0.7675851 0.8055668 0.843548 0.868675 75 0.75397921 0.7792066 0.8173408 0.855475 0.880702 76 0.76534070 0.7906862 0.8289990 0.867312 0.892657 77 0.77653408 0.8020185 0.8405413 0.879064 0.904549 78 0.78754996 0.8131979 0.8519678 0.890738 0.916386 79 0.79837866 0.8242185 0.8632785 0.902338 0.928178 80 0.80901036 0.8350744 0.8744733 0.913872 0.939936 81 0.81943516 0.8457597 0.8855523 0.925345 0.951669 82 0.82964324 0.8562684 0.8965154 0.936762 0.963388 83 0.83962502 0.8665947 0.9073627 0.948131 0.975100 84 0.84937122 0.8767332 0.9180941 0.959455 0.986817 85 0.85887309 0.8866785 0.9287098 0.970741 0.998546 86 0.86812243 0.8964257 0.9392095 0.981993 1.010297 87 0.87711179 0.9059703 0.9495934 0.993217 1.022075 88 0.88583447 0.9153083 0.9598615 1.004415 1.033889 89 0.89428462 0.9244361 0.9700138 1.015591 1.045743 90 0.90245726 0.9333508 0.9800502 1.026749 1.057643 91 0.91034831 0.9420499 0.9899707 1.037891 1.069593 92 0.91795453 0.9505315 0.9997754 1.049019 1.081596 93 0.92527350 0.9587940 1.0094643 1.060135 1.093655 94 0.93230358 0.9668366 1.0190373 1.071238 1.105771 95 0.93904380 0.9746586 1.0284945 1.082330 1.117945 96 0.94549385 0.9822598 1.0378359 1.093412 1.130178 97 0.95165390 0.9896403 1.0470614 1.104482 1.142469 98 0.95752462 0.9968006 1.0561710 1.115541 1.154817 99 0.96310704 1.0037413 1.0651648 1.126588 1.167223 100 0.96840246 1.0104631 1.0740428 1.137623 1.179683 knots : [1] -1.00000 -0.22449 1.00000 coef : [1] 0.0773974 0.0225871 0.8067413 1.0740429 > coR1 <- cobs(x,y,constraint = "increase", pointwise = con, degree = 1) qbsks2(): Performing general knot selection ... Deleting unnecessary knots ... Warning message: In cobs(x, y, constraint = "increase", pointwise = con, degree = 1) : drqssbc2(): Not all flags are normal (== 1), ifl : 20 > summary(coR1) COBS regression spline (degree = 1) from call: cobs(x = x, y = y, constraint = "increase", degree = 1, pointwise = con) **** ERROR in algorithm: ifl = 20 {tau=0.5}-quantile; dimensionality of fit: 3 from {3} x$knots[1:3]: -1.000002, -0.632653, 1.000002 with 3 pointwise constraints coef[1:3]: 0.0781509, 0.0820419, 1.1196697 R^2 = 94.72% ; empirical tau (over all): 25/50 = 0.5 (target tau= 0.5) > > ## compute the median *smoothing* B-spline using automatically chosen lambda > coS <- cobs(x,y,constraint = "increase", pointwise = con, + lambda = -1, trace = 3) Searching for optimal lambda. This may take a while. While you are waiting, here is something you can consider to speed up the process: (a) Use a smaller number of knots; (b) Set lambda==0 to exclude the penalty term; (c) Use a coarser grid by reducing the argument 'lambda.length' from the default value of 25. loo.design2(): -> Xeq 51 x 22 (nz = 151 =^= 0.13%) Xieq 62 x 22 (nz = 224 =^= 0.16%) ........................ Error in drqssbc2(x, y, w, pw = pw, knots = knots, degree = degree, Tlambda = if (select.lambda) lambdaSet else lambda, : The problem is degenerate for the range of lambda specified. Calls: cobs -> drqssbc2 In addition: Warning message: In min(sol1["k", i.keep]) : no non-missing arguments to min; returning Inf Execution halted Running the tests in ‘tests/ex2-long.R’ failed. Complete output: > #### > suppressMessages(library(cobs)) > > source(system.file("util.R", package = "cobs")) > (doExtra <- doExtras()) [1] FALSE > source(system.file("test-tools-1.R", package="Matrix", mustWork=TRUE)) Loading required package: tools > showProc.time() Time (user system elapsed): 0.001 0 0.002 > > options(digits = 5) > if(!dev.interactive(orNone=TRUE)) pdf("ex2.pdf") > > set.seed(821) > x <- round(sort(rnorm(200)), 3) # rounding -> multiple values > sum(duplicated(x)) # 9 [1] 3 > y <- (fx <- exp(-x)) + rt(200,4)/4 > summaryCobs(cxy <- cobs(x,y, "decrease")) qbsks2(): Performing general knot selection ... Deleting unnecessary knots ... List of 24 $ call : language cobs(x = x, y = y, constraint = "decrease") $ tau : num 0.5 $ degree : num 2 $ constraint : chr "decrease" $ ic : chr "AIC" $ pointwise : NULL $ select.knots : logi TRUE $ select.lambda: logi FALSE $ x : num [1:200] -2.56 -2.14 -1.91 -1.81 -1.78 ... $ y : num [1:200] 12.7 8.24 6.67 5.88 6.42 ... $ resid : num [1:200] 0.72 -0.149 0 -0.195 0.545 ... $ fitted : num [1:200] 11.98 8.39 6.67 6.07 5.87 ... $ coef : num [1:5] 11.9769 3.5917 1.0544 0.0295 0.0295 $ knots : num [1:4] -2.557 -0.813 0.418 2.573 $ k0 : num 5 $ k : num 5 $ x.ps :Formal class 'matrix.csr' [package "SparseM"] with 4 slots $ SSy : num 488 $ lambda : num 0 $ icyc : int 11 $ ifl : int 1 $ pp.lambda : NULL $ pp.sic : NULL $ i.mask : NULL cb.lo ci.lo fit ci.up cb.up 1 11.4448128 11.6875576 11.976923 12.26629 12.50903 2 10.9843366 11.2126114 11.484728 11.75684 11.98512 3 10.5344633 10.7489871 11.004712 11.26044 11.47496 4 10.0951784 10.2966768 10.536874 10.77707 10.97857 5 9.6664684 9.8556730 10.081215 10.30676 10.49596 6 9.2483213 9.4259693 9.637736 9.84950 10.02715 7 8.8407282 9.0075609 9.206435 9.40531 9.57214 8 8.4436848 8.6004453 8.787313 8.97418 9.13094 9 8.0571928 8.2046236 8.380369 8.55612 8.70355 10 7.6812627 7.8201015 7.985605 8.15111 8.28995 11 7.3159159 7.4468904 7.603020 7.75915 7.89012 12 6.9611870 7.0850095 7.232613 7.38022 7.50404 13 6.6171269 6.7344861 6.874385 7.01428 7.13164 14 6.2838041 6.3953578 6.528336 6.66131 6.77287 15 5.9613061 6.0676719 6.194466 6.32126 6.42763 16 5.6497392 5.7514863 5.872775 5.99406 6.09581 17 5.3492272 5.4468683 5.563262 5.67966 5.77730 18 5.0599086 5.1538933 5.265928 5.37796 5.47195 19 4.7819325 4.8726424 4.980774 5.08891 5.17961 20 4.5154542 4.6031999 4.707798 4.81240 4.90014 21 4.2606295 4.3456507 4.447001 4.54835 4.63337 22 4.0176099 4.1000771 4.198383 4.29669 4.37916 23 3.7865383 3.8665567 3.961943 4.05733 4.13735 24 3.5675443 3.6451602 3.737683 3.83021 3.90782 25 3.3607413 3.4359491 3.525601 3.61525 3.69046 26 3.1662231 3.2389744 3.325698 3.41242 3.48517 27 2.9840608 3.0542750 3.137974 3.22167 3.29189 28 2.8142997 2.8818753 2.962429 3.04298 3.11056 29 2.6569546 2.7217833 2.799063 2.87634 2.94117 30 2.5120031 2.5739870 2.647875 2.72176 2.78375 31 2.3793776 2.4384496 2.508867 2.57928 2.63836 32 2.2589520 2.3151025 2.382037 2.44897 2.50512 33 2.1505256 2.2038366 2.267386 2.33094 2.38425 34 2.0538038 2.1044916 2.164914 2.22534 2.27602 35 1.9677723 2.0162522 2.074043 2.13183 2.18031 36 1.8846710 1.9316617 1.987677 2.04369 2.09068 37 1.8024456 1.8486425 1.903712 1.95878 2.00498 38 1.7213655 1.7673410 1.822146 1.87695 1.92293 39 1.6417290 1.6879196 1.742982 1.79804 1.84423 40 1.5638322 1.6105393 1.666217 1.72189 1.76860 41 1.4879462 1.5353474 1.591852 1.64836 1.69576 42 1.4143040 1.4624707 1.519888 1.57731 1.62547 43 1.3430975 1.3920136 1.450324 1.50864 1.55755 44 1.2744792 1.3240589 1.383161 1.44226 1.49184 45 1.2085658 1.2586702 1.318397 1.37812 1.42823 46 1.1454438 1.1958944 1.256034 1.31617 1.36662 47 1.0851730 1.1357641 1.196072 1.25638 1.30697 48 1.0277900 1.0782992 1.138509 1.19872 1.24923 49 0.9733099 1.0235079 1.083347 1.14319 1.19338 50 0.9217268 0.9713870 1.030585 1.08978 1.13944 51 0.8730129 0.9219214 0.980223 1.03852 1.08743 52 0.8271160 0.8750827 0.932262 0.98944 1.03741 53 0.7839554 0.8308269 0.886700 0.94257 0.98945 54 0.7434158 0.7890916 0.843540 0.89799 0.94366 55 0.7053406 0.7497913 0.802779 0.85577 0.90022 56 0.6695233 0.7128138 0.764419 0.81602 0.85931 57 0.6357022 0.6780170 0.728459 0.77890 0.82121 58 0.6035616 0.6452289 0.694899 0.74457 0.78624 59 0.5724566 0.6139693 0.663455 0.71294 0.75445 60 0.5410437 0.5829503 0.632905 0.68286 0.72477 61 0.5094333 0.5521679 0.603110 0.65405 0.69679 62 0.4778879 0.5217649 0.574069 0.62637 0.67025 63 0.4466418 0.4918689 0.545782 0.59970 0.64492 64 0.4158910 0.4625864 0.518250 0.57391 0.62061 65 0.3857918 0.4340022 0.491472 0.54894 0.59715 66 0.3564634 0.4061813 0.465448 0.52471 0.57443 67 0.3279928 0.3791711 0.440179 0.50119 0.55236 68 0.3004403 0.3530042 0.415663 0.47832 0.53089 69 0.2738429 0.3277009 0.391903 0.45610 0.50996 70 0.2482184 0.3032707 0.368896 0.43452 0.48957 71 0.2235676 0.2797141 0.346644 0.41357 0.46972 72 0.1998762 0.2570233 0.325146 0.39327 0.45042 73 0.1771158 0.2351830 0.304402 0.37362 0.43169 74 0.1552452 0.2141706 0.284413 0.35466 0.41358 75 0.1342101 0.1939567 0.265178 0.33640 0.39615 76 0.1139444 0.1745054 0.246697 0.31889 0.37945 77 0.0943704 0.1557743 0.228971 0.30217 0.36357 78 0.0753996 0.1377153 0.211999 0.28628 0.34860 79 0.0569347 0.1202755 0.195781 0.27129 0.33463 80 0.0388708 0.1033980 0.180318 0.25724 0.32177 81 0.0210989 0.0870233 0.165609 0.24419 0.31012 82 0.0035089 0.0710917 0.151654 0.23222 0.29980 83 -0.0140062 0.0555449 0.138454 0.22136 0.29091 84 -0.0315470 0.0403283 0.126008 0.21169 0.28356 85 -0.0492034 0.0253928 0.114316 0.20324 0.27783 86 -0.0670524 0.0106968 0.103378 0.19606 0.27381 87 -0.0851561 -0.0037936 0.093195 0.19018 0.27155 88 -0.1035613 -0.0181039 0.083766 0.18564 0.27109 89 -0.1223000 -0.0322515 0.075091 0.18243 0.27248 90 -0.1413914 -0.0462467 0.067171 0.18059 0.27573 91 -0.1608432 -0.0600938 0.060005 0.18010 0.28085 92 -0.1806546 -0.0737923 0.053594 0.18098 0.28784 93 -0.2008180 -0.0873382 0.047936 0.18321 0.29669 94 -0.2213213 -0.1007247 0.043033 0.18679 0.30739 95 -0.2421494 -0.1139438 0.038884 0.19171 0.31992 96 -0.2632855 -0.1269863 0.035490 0.19797 0.33427 97 -0.2847123 -0.1398427 0.032850 0.20554 0.35041 98 -0.3064126 -0.1525038 0.030964 0.21443 0.36834 99 -0.3283696 -0.1649603 0.029833 0.22463 0.38804 100 -0.3505674 -0.1772037 0.029456 0.23611 0.40948 knots : [1] -2.557 -0.813 0.418 2.573 coef : [1] 11.976924 3.591747 1.054378 0.029456 0.029456 > 1 - sum(cxy $ resid ^ 2) / sum((y - mean(y))^2) # R^2 = 97.6% [1] 0.95969 > showProc.time() Time (user system elapsed): 0.445 0.013 0.716 > > if(doExtra) { + ## Interpolation + cxyI <- cobs(x,y, "decrease", knots = unique(x)) + ## takes quite long : 63 sec. (Pent. III, 700 MHz) --- this is because + ## each knot is added sequentially... {{improve!}} + + summaryCobs(cxyI)# only 7 knots remaining! + showProc.time() + } > > summaryCobs(cxy1 <- cobs(x,y, "decrease", lambda = 0.1)) List of 24 $ call : language cobs(x = x, y = y, constraint = "decrease", lambda = 0.1) $ tau : num 0.5 $ degree : num 2 $ constraint : chr "decrease" $ ic : NULL $ pointwise : NULL $ select.knots : logi TRUE $ select.lambda: logi FALSE $ x : num [1:200] -2.56 -2.14 -1.91 -1.81 -1.78 ... $ y : num [1:200] 12.7 8.24 6.67 5.88 6.42 ... $ resid : num [1:200] 0 -0.315 0 -0.161 0.586 ... $ fitted : num [1:200] 12.7 8.56 6.67 6.04 5.83 ... $ coef : num [1:22] 12.7 5.78 3.16 2.43 2.11 ... $ knots : num [1:20] -2.557 -1.34 -1.03 -0.901 -0.772 ... $ k0 : int 15 $ k : int 15 $ x.ps :Formal class 'matrix.csr' [package "SparseM"] with 4 slots $ SSy : num 488 $ lambda : num 0.1 $ icyc : int 23 $ ifl : int 1 $ pp.lambda : NULL $ pp.sic : NULL $ i.mask : NULL cb.lo ci.lo fit ci.up cb.up 1 12.0912847 12.4849933 12.6970034 12.90901 13.30272 2 11.5452819 11.9166521 12.1166331 12.31661 12.68798 3 11.0146966 11.3650966 11.5537853 11.74247 12.09287 4 10.4995535 10.8303355 11.0084599 11.18658 11.51737 5 9.9998870 10.3123808 10.4806571 10.64893 10.96143 6 9.5157430 9.8112485 9.9703768 10.12951 10.42501 7 9.0471805 9.3269594 9.4776191 9.62828 9.90806 8 8.5942728 8.8595392 9.0023838 9.14523 9.41049 9 8.1571088 8.4090188 8.5446710 8.68032 8.93223 10 7.7357927 7.9754347 8.1044808 8.23353 8.47317 11 7.3304438 7.5588289 7.6818131 7.80480 8.03318 12 6.9411951 7.1592477 7.2766679 7.39409 7.61214 13 6.5681906 6.7767415 6.8890452 7.00135 7.20990 14 6.2115819 6.4113636 6.5189450 6.62653 6.82631 15 5.8715240 6.0631680 6.1663674 6.26957 6.46121 16 5.5481704 5.7322086 5.8313123 5.93042 6.11445 17 5.2416676 5.4185366 5.5137796 5.60902 5.78589 18 4.9521494 5.1221988 5.2137695 5.30534 5.47539 19 4.6797308 4.8432355 4.9312819 5.01933 5.18283 20 4.4245017 4.5816781 4.6663169 4.75096 4.90813 21 4.1865199 4.3375470 4.4188743 4.50020 4.65123 22 3.9658032 4.1108482 4.1889542 4.26706 4.41211 23 3.7623206 3.9015710 3.9765567 4.05154 4.19079 24 3.5759813 3.7096836 3.7816817 3.85368 3.98738 25 3.4043771 3.5329043 3.6021155 3.67133 3.79985 26 3.2347309 3.3585931 3.4252922 3.49199 3.61585 27 3.0652721 3.1848437 3.2492325 3.31362 3.43319 28 2.8962030 3.0117271 3.0739363 3.13615 3.25167 29 2.7276530 2.8392885 2.8994037 2.95952 3.07115 30 2.5596612 2.6675415 2.7256346 2.78373 2.89161 31 2.3944947 2.4988186 2.5549966 2.61117 2.71550 32 2.2444821 2.3455939 2.4000421 2.45449 2.55560 33 2.1114672 2.2097080 2.2626102 2.31551 2.41375 34 1.9954176 2.0911496 2.1427009 2.19425 2.28998 35 1.8963846 1.9899366 2.0403140 2.09069 2.18424 36 1.8125024 1.9041996 1.9535781 2.00296 2.09465 37 1.7347658 1.8248332 1.8733340 1.92183 2.01190 38 1.6620975 1.7506630 1.7983550 1.84605 1.93461 39 1.5945123 1.6816941 1.7286411 1.77559 1.86277 40 1.5278221 1.6138190 1.6601279 1.70644 1.79243 41 1.4573347 1.5423451 1.5881227 1.63390 1.71891 42 1.3839943 1.4682138 1.5135655 1.55892 1.64314 43 1.3227219 1.4063482 1.4513806 1.49641 1.58004 44 1.2787473 1.3619265 1.4067181 1.45151 1.53469 45 1.2488624 1.3317463 1.3763789 1.42101 1.50390 46 1.2168724 1.2994789 1.3439621 1.38845 1.47105 47 1.1806389 1.2628708 1.3071522 1.35143 1.43367 48 1.1401892 1.2219316 1.2659495 1.30997 1.39171 49 1.0941843 1.1754044 1.2191410 1.26288 1.34410 50 1.0326549 1.1134412 1.1569442 1.20045 1.28123 51 0.9535058 1.0339215 1.0772249 1.12053 1.20094 52 0.8632281 0.9433870 0.9865521 1.02972 1.10988 53 0.7875624 0.8676441 0.9107678 0.95389 1.03397 54 0.7267897 0.8069673 0.8501425 0.89332 0.97350 55 0.6673925 0.7477244 0.7909827 0.83424 0.91457 56 0.6072642 0.6877460 0.7310850 0.77442 0.85491 57 0.5471548 0.6278279 0.6712700 0.71471 0.79539 58 0.4995140 0.5804770 0.6240752 0.66767 0.74864 59 0.4686435 0.5499607 0.5937495 0.63754 0.71886 60 0.4531016 0.5348803 0.5789177 0.62296 0.70473 61 0.4381911 0.5206110 0.5649937 0.60938 0.69180 62 0.4199957 0.5032331 0.5480561 0.59288 0.67612 63 0.4036491 0.4879280 0.5333117 0.57870 0.66297 64 0.3952493 0.4807890 0.5268517 0.57291 0.65845 65 0.3926229 0.4796600 0.5265291 0.57340 0.66044 66 0.3900185 0.4787485 0.5265291 0.57431 0.66304 67 0.3870480 0.4776752 0.5264774 0.57528 0.66591 68 0.3738545 0.4665585 0.5164792 0.56640 0.65910 69 0.3432056 0.4380737 0.4891596 0.54025 0.63511 70 0.2950830 0.3922142 0.4445189 0.49682 0.59395 71 0.2295290 0.3291123 0.3827373 0.43636 0.53595 72 0.1670195 0.2693294 0.3244228 0.37952 0.48183 73 0.1216565 0.2269375 0.2836308 0.34032 0.44561 74 0.0934100 0.2019260 0.2603613 0.31880 0.42731 75 0.0787462 0.1907702 0.2510947 0.31142 0.42344 76 0.0658428 0.1813823 0.2435998 0.30582 0.42136 77 0.0538230 0.1727768 0.2368329 0.30089 0.41984 78 0.0427388 0.1649719 0.2307938 0.29662 0.41885 79 0.0325663 0.1579592 0.2254827 0.29301 0.41840 80 0.0232151 0.1517072 0.2208995 0.29009 0.41858 81 0.0145359 0.1461634 0.2170442 0.28792 0.41955 82 0.0063272 0.1412575 0.2139168 0.28658 0.42151 83 -0.0016568 0.1369034 0.2115173 0.28613 0.42469 84 -0.0096967 0.1330028 0.2098457 0.28669 0.42939 85 -0.0180957 0.1294496 0.2089021 0.28835 0.43590 86 -0.0272134 0.1260791 0.2086264 0.29117 0.44447 87 -0.0387972 0.1210358 0.2071052 0.29317 0.45301 88 -0.0534279 0.1135207 0.2034217 0.29332 0.46027 89 -0.0709531 0.1035871 0.1975762 0.29157 0.46611 90 -0.0912981 0.0912612 0.1895684 0.28788 0.47043 91 -0.1144525 0.0765465 0.1793985 0.28225 0.47325 92 -0.1404576 0.0594287 0.1670665 0.27470 0.47459 93 -0.1693951 0.0398791 0.1525723 0.26527 0.47454 94 -0.2013769 0.0178586 0.1359159 0.25397 0.47321 95 -0.2365365 -0.0066795 0.1170974 0.24087 0.47073 96 -0.2750210 -0.0337868 0.0961167 0.22602 0.46725 97 -0.3169840 -0.0635170 0.0729738 0.20946 0.46293 98 -0.3625797 -0.0959240 0.0476688 0.19126 0.45792 99 -0.4119579 -0.1310604 0.0202016 0.17146 0.45236 100 -0.4652595 -0.1689754 -0.0094278 0.15012 0.44640 knots : [1] -2.557 -1.340 -1.030 -0.901 -0.772 -0.586 -0.448 -0.305 -0.092 0.054 [11] 0.163 0.329 0.481 0.606 0.722 0.859 1.065 1.244 1.837 2.573 coef : [1] 12.6970048 5.7788265 3.1620633 2.4291174 2.1069607 1.8462166 [7] 1.6371062 1.4304905 1.3348346 1.1758220 0.9413974 0.7863913 [13] 0.5998958 0.5697029 0.5265291 0.5265291 0.5265291 0.2707227 [19] 0.2086712 0.2086712 -0.0094278 6.5257497 > 1 - sum(cxy1 $ resid ^ 2) / sum((y - mean(y))^2) # R^2 = 98.2% [1] 0.96169 > > summaryCobs(cxy2 <- cobs(x,y, "decrease", lambda = 1e-2)) List of 24 $ call : language cobs(x = x, y = y, constraint = "decrease", lambda = 0.01) $ tau : num 0.5 $ degree : num 2 $ constraint : chr "decrease" $ ic : NULL $ pointwise : NULL $ select.knots : logi TRUE $ select.lambda: logi FALSE $ x : num [1:200] -2.56 -2.14 -1.91 -1.81 -1.78 ... $ y : num [1:200] 12.7 8.24 6.67 5.88 6.42 ... $ resid : num [1:200] 0 -0.146 0.1468 -0.0463 0.6868 ... $ fitted : num [1:200] 12.7 8.39 6.52 5.92 5.73 ... $ coef : num [1:22] 12.7 5.34 3.59 2.19 2.13 ... $ knots : num [1:20] -2.557 -1.34 -1.03 -0.901 -0.772 ... $ k0 : int 21 $ k : int 21 $ x.ps :Formal class 'matrix.csr' [package "SparseM"] with 4 slots $ SSy : num 488 $ lambda : num 0.01 $ icyc : int 35 $ ifl : int 1 $ pp.lambda : NULL $ pp.sic : NULL $ i.mask : NULL cb.lo ci.lo fit ci.up cb.up 1 12.0477594 12.4997491 12.6970071 12.89427 13.34625 2 11.4687308 11.8950752 12.0811411 12.26721 12.69355 3 10.9090823 11.3113523 11.4869116 11.66247 12.06474 4 10.3688404 10.7485883 10.9143185 11.08005 11.45980 5 9.8480420 10.2067945 10.3633618 10.51993 10.87868 6 9.3467363 9.6859859 9.8340417 9.98210 10.32135 7 8.8649866 9.1861815 9.3263579 9.46653 9.78773 8 8.4028715 8.7074055 8.8403106 8.97322 9.27775 9 7.9604861 8.2496865 8.3758998 8.50211 8.79131 10 7.5379421 7.8130586 7.9331254 8.05319 8.32831 11 7.1353676 7.3975607 7.5119874 7.62641 7.88861 12 6.7529050 7.0032361 7.1124859 7.22174 7.47207 13 6.3907086 6.6301316 6.7346209 6.83911 7.07853 14 6.0489410 6.2782966 6.3783923 6.47849 6.70784 15 5.7277684 5.9477816 6.0438001 6.13982 6.35983 16 5.4273551 5.6386366 5.7308444 5.82305 6.03433 17 5.1478583 5.3509094 5.4395252 5.52814 5.73119 18 4.8894214 5.0846433 5.1698424 5.25504 5.45026 19 4.6521676 4.8398760 4.9217960 5.00372 5.19142 20 4.4361933 4.6166367 4.6953861 4.77414 4.95458 21 4.2415605 4.4149443 4.4906127 4.56628 4.73966 22 4.0682883 4.2348044 4.3074756 4.38015 4.54666 23 3.9163432 4.0762071 4.1459751 4.21574 4.37561 24 3.7856282 3.9391227 4.0061110 4.07310 4.22659 25 3.6683774 3.8159306 3.8803259 3.94472 4.09227 26 3.5214653 3.6636629 3.7257209 3.78778 3.92998 27 3.3383583 3.4756303 3.5355387 3.59545 3.73272 28 3.1192735 3.2518988 3.3097793 3.36766 3.50028 29 2.8643493 2.9925103 3.0484425 3.10437 3.23254 30 2.5736278 2.6974778 2.7515286 2.80558 2.92943 31 2.2696062 2.3893733 2.4416422 2.49391 2.61368 32 2.0718959 2.1879754 2.2386350 2.28929 2.40537 33 1.9979346 2.1107181 2.1599392 2.20916 2.32194 34 1.9710324 2.0809358 2.1288999 2.17686 2.28677 35 1.9261503 2.0335510 2.0804229 2.12729 2.23470 36 1.8645775 1.9698487 2.0157914 2.06173 2.16701 37 1.7927585 1.8961587 1.9412848 1.98641 2.08981 38 1.7116948 1.8133707 1.8577443 1.90212 2.00379 39 1.6214021 1.7214896 1.7651699 1.80885 1.90894 40 1.5242004 1.6229275 1.6660141 1.70910 1.80783 41 1.4229217 1.5205162 1.5631086 1.60570 1.70330 42 1.3194940 1.4161806 1.4583766 1.50057 1.59726 43 1.2442053 1.3402109 1.3821098 1.42401 1.52001 44 1.2075941 1.3030864 1.3447613 1.38644 1.48193 45 1.2023778 1.2975311 1.3390581 1.38059 1.47574 46 1.1914924 1.2863272 1.3277152 1.36910 1.46394 47 1.1698641 1.2642688 1.3054691 1.34667 1.44107 48 1.1375221 1.2313649 1.2723199 1.31327 1.40712 49 1.0934278 1.1866710 1.2273643 1.26806 1.36130 50 1.0300956 1.1228408 1.1633168 1.20379 1.29654 51 0.9459780 1.0382977 1.0785880 1.11888 1.21120 52 0.8492712 0.9412961 0.9814577 1.02162 1.11364 53 0.7724392 0.8643755 0.9044985 0.94462 1.03656 54 0.7154255 0.8074718 0.8476428 0.88781 0.97986 55 0.6587891 0.7510125 0.7912608 0.83151 0.92373 56 0.5994755 0.6918710 0.7321944 0.77252 0.86491 57 0.5383570 0.6309722 0.6713915 0.71181 0.80443 58 0.4898228 0.5827709 0.6233354 0.66390 0.75685 59 0.4588380 0.5521926 0.5929345 0.63368 0.72703 60 0.4438719 0.5377564 0.5787296 0.61970 0.71359 61 0.4293281 0.5239487 0.5652432 0.60654 0.70116 62 0.4110511 0.5066103 0.5483143 0.59002 0.68558 63 0.3944126 0.4911673 0.5333932 0.57562 0.67237 64 0.3857958 0.4839980 0.5268556 0.56971 0.66792 65 0.3830000 0.4829213 0.5265291 0.57014 0.67006 66 0.3802084 0.4820731 0.5265291 0.57099 0.67285 67 0.3770181 0.4810608 0.5264673 0.57187 0.67592 68 0.3616408 0.4680678 0.5145149 0.56096 0.66739 69 0.3254129 0.4343244 0.4818557 0.52939 0.63830 70 0.2683149 0.3798245 0.4284897 0.47715 0.58866 71 0.1904294 0.3047541 0.3546478 0.40454 0.51887 72 0.1179556 0.2354105 0.2866704 0.33793 0.45539 73 0.0689088 0.1897746 0.2425231 0.29527 0.41614 74 0.0432569 0.1678366 0.2222059 0.27658 0.40115 75 0.0359906 0.1645977 0.2207246 0.27685 0.40546 76 0.0301934 0.1628364 0.2207246 0.27861 0.41126 77 0.0245630 0.1611257 0.2207246 0.28032 0.41689 78 0.0191553 0.1594827 0.2207246 0.28197 0.42229 79 0.0139446 0.1578996 0.2207246 0.28355 0.42750 80 0.0088340 0.1563468 0.2207246 0.28510 0.43262 81 0.0036634 0.1547759 0.2207246 0.28667 0.43779 82 -0.0017830 0.1531211 0.2207246 0.28833 0.44323 83 -0.0077688 0.1513025 0.2207246 0.29015 0.44922 84 -0.0145948 0.1492286 0.2207246 0.29222 0.45604 85 -0.0225859 0.1468007 0.2207246 0.29465 0.46404 86 -0.0321107 0.1438739 0.2206774 0.29748 0.47347 87 -0.0445016 0.1389916 0.2190720 0.29915 0.48265 88 -0.0601227 0.1315395 0.2151851 0.29883 0.49049 89 -0.0788103 0.1215673 0.2090164 0.29647 0.49684 90 -0.1004844 0.1090993 0.2005661 0.29203 0.50162 91 -0.1251339 0.0941388 0.1898342 0.28553 0.50480 92 -0.1528032 0.0766725 0.1768206 0.27697 0.50644 93 -0.1835797 0.0566736 0.1615253 0.26638 0.50663 94 -0.2175834 0.0341058 0.1439484 0.25379 0.50548 95 -0.2549574 0.0089256 0.1240898 0.23925 0.50314 96 -0.2958592 -0.0189149 0.1019496 0.22281 0.49976 97 -0.3404537 -0.0494657 0.0775277 0.20452 0.49551 98 -0.3889062 -0.0827771 0.0508241 0.18443 0.49055 99 -0.4413769 -0.1188979 0.0218389 0.16258 0.48505 100 -0.4980173 -0.1578738 -0.0094279 0.13902 0.47916 knots : [1] -2.557 -1.340 -1.030 -0.901 -0.772 -0.586 -0.448 -0.305 -0.092 0.054 [11] 0.163 0.329 0.481 0.606 0.722 0.859 1.065 1.244 1.837 2.573 coef : [1] 12.697009 5.337850 3.591398 2.187733 2.133993 1.936435 1.631856 [8] 1.340650 1.340650 1.185401 0.931750 0.789326 0.598245 0.570221 [15] 0.526529 0.526529 0.526529 0.220725 0.220725 0.220725 -0.009428 [22] 46.342964 > 1 - sum(cxy2 $ resid ^ 2) / sum((y - mean(y))^2) # R^2 = 98.2% (tiny bit better) [1] 0.96257 > > summaryCobs(cxy3 <- cobs(x,y, "decrease", lambda = 1e-6, nknots = 60)) List of 24 $ call : language cobs(x = x, y = y, constraint = "decrease", nknots = 60, lambda = 1e-06) $ tau : num 0.5 $ degree : num 2 $ constraint : chr "decrease" $ ic : NULL $ pointwise : NULL $ select.knots : logi TRUE $ select.lambda: logi FALSE $ x : num [1:200] -2.56 -2.14 -1.91 -1.81 -1.78 ... $ y : num [1:200] 12.7 8.24 6.67 5.88 6.42 ... $ resid : num [1:200] 0 0 0 -0.382 0.309 ... $ fitted : num [1:200] 12.7 8.24 6.67 6.26 6.11 ... $ coef : num [1:62] 12.7 7.69 6.09 4.35 3.73 3.73 2.74 2.57 2.57 2.25 ... $ knots : num [1:60] -2.56 -1.81 -1.73 -1.38 -1.23 ... $ k0 : int 61 $ k : int 61 $ x.ps :Formal class 'matrix.csr' [package "SparseM"] with 4 slots $ SSy : num 488 $ lambda : num 1e-06 $ icyc : int 46 $ ifl : int 1 $ pp.lambda : NULL $ pp.sic : NULL $ i.mask : NULL cb.lo ci.lo fit ci.up cb.up 1 12.0247124 12.56890432 12.6970139 12.825123 13.36932 2 11.3797843 11.89599414 12.0175164 12.139039 12.65525 3 10.7668218 11.25721357 11.3726579 11.488102 11.97849 4 10.1860204 10.65259986 10.7624385 10.872277 11.33886 5 9.6375946 10.08219388 10.1868581 10.291522 10.73612 6 9.1217734 9.54603927 9.6459167 9.745794 10.17006 7 8.6387946 9.04418136 9.1396144 9.235048 9.64043 8 8.1888978 8.57666578 8.6679512 8.759237 9.14700 9 7.7723156 8.14353686 8.2309270 8.318317 8.68954 10 7.3892646 7.74483589 7.8285418 7.912248 8.26782 11 7.0399352 7.38059913 7.4607957 7.540992 7.88166 12 6.7244802 7.05085572 7.1276886 7.204521 7.53090 13 6.4430029 6.75562533 6.8292205 6.902816 7.21544 14 6.1955428 6.49491547 6.5653915 6.635868 6.93524 15 5.9820595 6.26871848 6.3362016 6.403685 6.69034 16 5.7696526 6.04428975 6.1089428 6.173596 6.44823 17 5.4339991 5.69759119 5.7596440 5.821697 6.08529 18 5.0454361 5.29908138 5.3587927 5.418504 5.67215 19 4.6993977 4.94405130 5.0016458 5.059240 5.30389 20 4.3963458 4.63268699 4.6883247 4.743962 4.98030 21 4.1365583 4.36504142 4.4188292 4.472617 4.70110 22 3.9202312 4.14115193 4.1931594 4.245167 4.46609 23 3.7474595 3.96103662 4.0113153 4.061594 4.27517 24 3.6182953 3.82478434 3.8733944 3.922005 4.12849 25 3.5335861 3.73343196 3.7804782 3.827524 4.02737 26 3.4937186 3.68729597 3.7328665 3.778437 3.97201 27 3.4752667 3.66292175 3.7070981 3.751274 3.93893 28 3.3043525 3.48641351 3.5292729 3.572132 3.75419 29 2.9458452 3.12249549 3.1640812 3.205667 3.38232 30 2.4899112 2.66132542 2.7016785 2.742031 2.91345 31 2.3652956 2.53186083 2.5710724 2.610284 2.77685 32 2.2382402 2.40029503 2.4384448 2.476594 2.63865 33 2.0486975 2.20653724 2.2436947 2.280852 2.43869 34 2.0511798 2.20522276 2.2414864 2.277750 2.43179 35 2.0553528 2.20601792 2.2414864 2.276955 2.42762 36 2.0385642 2.18623332 2.2209965 2.255760 2.40343 37 1.8391470 1.98414706 2.0182819 2.052417 2.19742 38 1.6312788 1.77395114 1.8075380 1.841125 1.98380 39 1.5314449 1.67192652 1.7049976 1.738069 1.87855 40 1.5208780 1.65927041 1.6918497 1.724429 1.86282 41 1.4986364 1.63513027 1.6672626 1.699395 1.83589 42 1.4498027 1.58470514 1.6164629 1.648221 1.78312 43 1.2247043 1.35830771 1.3897596 1.421211 1.55481 44 1.1772885 1.30980813 1.3410049 1.372202 1.50472 45 1.1781750 1.30997706 1.3410049 1.372033 1.50383 46 1.1786125 1.31005757 1.3410014 1.371945 1.50339 47 1.1644262 1.29555858 1.3264288 1.357299 1.48843 48 1.1223208 1.25286982 1.2836027 1.314336 1.44488 49 1.0583227 1.18805529 1.2185960 1.249137 1.37887 50 1.0360396 1.16504088 1.1954094 1.225778 1.35478 51 1.0366880 1.16516444 1.1954094 1.225654 1.35413 52 0.9728290 1.10089058 1.1310379 1.161185 1.28925 53 0.6458992 0.77387319 0.8039998 0.834127 0.96210 54 0.6278378 0.75589463 0.7860408 0.816187 0.94424 55 0.6233664 0.75144260 0.7815933 0.811744 0.93982 56 0.6203139 0.74853170 0.7787158 0.808900 0.93712 57 0.4831205 0.61171664 0.6419898 0.672263 0.80086 58 0.4152141 0.54435194 0.5747526 0.605153 0.73429 59 0.4143942 0.54419570 0.5747526 0.605309 0.73511 60 0.4133407 0.54399495 0.5747526 0.605510 0.73616 61 0.3912541 0.52305164 0.5540784 0.585105 0.71690 62 0.3615872 0.49479624 0.5261553 0.557514 0.69072 63 0.3595156 0.49440150 0.5261553 0.557909 0.69279 64 0.3572502 0.49396981 0.5261553 0.558341 0.69506 65 0.3545874 0.49346241 0.5261553 0.558848 0.69772 66 0.3515435 0.49288238 0.5261553 0.559428 0.70077 67 0.3482098 0.49224713 0.5261553 0.560063 0.70410 68 0.3447026 0.49157882 0.5261553 0.560732 0.70761 69 0.3265062 0.47651151 0.5118246 0.547138 0.69714 70 0.2579257 0.41132297 0.4474346 0.483546 0.63694 71 0.2081857 0.36515737 0.4021105 0.439064 0.59604 72 0.1349572 0.29569526 0.3335350 0.371375 0.53211 73 0.0020438 0.16674762 0.2055209 0.244294 0.40900 74 -0.0243664 0.14460810 0.1843868 0.224166 0.39314 75 -0.0362635 0.13720915 0.1780468 0.218884 0.39236 76 -0.0421115 0.13609478 0.1780468 0.219999 0.39820 77 -0.0482083 0.13493301 0.1780468 0.221161 0.40430 78 -0.0546034 0.13371440 0.1780468 0.222379 0.41070 79 -0.0610386 0.13248816 0.1780468 0.223605 0.41713 80 -0.0674722 0.13126221 0.1780468 0.224831 0.42357 81 -0.0740291 0.13001276 0.1780468 0.226081 0.43012 82 -0.0809567 0.12869267 0.1780468 0.227401 0.43705 83 -0.0885308 0.12724941 0.1780468 0.228844 0.44462 84 -0.0966886 0.12569491 0.1780468 0.230399 0.45278 85 -0.1053882 0.12403716 0.1780468 0.232056 0.46148 86 -0.1147206 0.12225885 0.1780468 0.233835 0.47081 87 -0.1248842 0.12032213 0.1780468 0.235771 0.48098 88 -0.1360096 0.11820215 0.1780468 0.237891 0.49210 89 -0.1480747 0.11590310 0.1780468 0.240190 0.50417 90 -0.1611528 0.11337745 0.1780053 0.242633 0.51716 91 -0.1772967 0.10838384 0.1756366 0.242889 0.52857 92 -0.1976403 0.09964452 0.1696291 0.239614 0.53690 93 -0.2221958 0.08715720 0.1599828 0.232808 0.54216 94 -0.2510614 0.07090314 0.1466976 0.222492 0.54446 95 -0.2844042 0.05085051 0.1297736 0.208697 0.54395 96 -0.3224450 0.02695723 0.1092109 0.191465 0.54087 97 -0.3654434 -0.00082617 0.0850093 0.170845 0.53546 98 -0.4136843 -0.03255395 0.0571689 0.146892 0.52802 99 -0.4674640 -0.06828261 0.0256897 0.119662 0.51884 100 -0.5270786 -0.10806856 -0.0094284 0.089212 0.50822 knots : [1] -2.557 -1.812 -1.726 -1.384 -1.233 -1.082 -1.046 -1.009 -0.932 -0.902 [11] -0.877 -0.838 -0.813 -0.765 -0.707 -0.665 -0.568 -0.498 -0.460 -0.413 [21] -0.347 -0.333 -0.299 -0.274 -0.226 -0.089 -0.024 -0.011 0.063 0.094 [31] 0.118 0.136 0.231 0.285 0.328 0.392 0.460 0.473 0.517 0.551 [41] 0.602 0.623 0.692 0.715 0.742 0.787 0.812 0.892 0.934 0.988 [51] 1.070 1.162 1.178 1.276 1.402 1.655 1.877 1.988 2.047 2.573 coef : [1] 12.6970155 7.6878537 6.0937652 4.3540061 3.7259911 3.7259911 [7] 2.7408131 2.5727608 2.5727608 2.2478639 2.2414864 2.2414864 [13] 2.2414864 2.2414864 2.2414864 1.9875889 1.6964374 1.6964374 [19] 1.6623718 1.6623718 1.3410049 1.3410049 1.3410049 1.3410049 [25] 1.3410049 1.3410049 1.1954094 1.1954094 1.1954094 1.1954094 [31] 0.9829296 0.8091342 0.7815933 0.7815933 0.7815933 0.5747526 [37] 0.5747526 0.5747526 0.5747526 0.5747526 0.5261553 0.5261553 [43] 0.5261553 0.5261553 0.5261553 0.5261553 0.5261553 0.5261553 [49] 0.5261553 0.5261553 0.4273578 0.3741431 0.2060752 0.1780468 [55] 0.1780468 0.1780468 0.1780468 0.1780468 0.1780468 0.1780468 [61] -0.0094285 432.6957871 > 1 - sum(cxy3 $ resid ^ 2) / sum((y - mean(y))^2) # R^2 = 98.36% [1] 0.96502 > showProc.time() Time (user system elapsed): 0.156 0.008 0.2 > > cpuTime(cxy4 <- cobs(x,y, "decrease", lambda = 1e-6, nknots = 100))# ~ 3 sec. Time elapsed: 0.053 > 1 - sum(cxy4 $ resid ^ 2) / sum((y - mean(y))^2) # R^2 = 98.443% [1] 0.96603 > > cpuTime(cxy5 <- cobs(x,y, "decrease", lambda = 1e-6, nknots = 150))# ~ 8.7 sec. Time elapsed: 0.03 > 1 - sum(cxy5 $ resid ^ 2) / sum((y - mean(y))^2) # R^2 = 98.4396% [1] 0.96835 > showProc.time() Time (user system elapsed): 0.408 0.004 0.513 > > > ## regularly spaced x : > X <- seq(-1,1, len = 201) > xx <- c(seq(-1.1, -1, len = 11), X, + seq( 1, 1.1, len = 11)) > y <- (fx <- exp(-X)) + rt(201,4)/4 > summaryCobs(cXy <- cobs(X,y, "decrease")) qbsks2(): Performing general knot selection ... Deleting unnecessary knots ... List of 24 $ call : language cobs(x = X, y = y, constraint = "decrease") $ tau : num 0.5 $ degree : num 2 $ constraint : chr "decrease" $ ic : chr "AIC" $ pointwise : NULL $ select.knots : logi TRUE $ select.lambda: logi FALSE $ x : num [1:201] -1 -0.99 -0.98 -0.97 -0.96 -0.95 -0.94 -0.93 -0.92 -0.91 ... $ y : num [1:201] 2.67 2.77 3.46 3.14 1.79 ... $ resid : num [1:201] 0 0.125 0.84 0.555 -0.77 ... $ fitted : num [1:201] 2.67 2.64 2.62 2.59 2.56 ... $ coef : num [1:4] 2.672 1.556 0.7 0.356 $ knots : num [1:3] -1 -0.2 1 $ k0 : num 4 $ k : num 4 $ x.ps :Formal class 'matrix.csr' [package "SparseM"] with 4 slots $ SSy : num 100 $ lambda : num 0 $ icyc : int 9 $ ifl : int 1 $ pp.lambda : NULL $ pp.sic : NULL $ i.mask : NULL cb.lo ci.lo fit ci.up cb.up 1 2.46750 2.55064 2.67153 2.79242 2.87556 2 2.42251 2.50122 2.61568 2.73013 2.80884 3 2.37783 2.45240 2.56081 2.66923 2.74379 4 2.33345 2.40414 2.50694 2.60973 2.68043 5 2.28933 2.35645 2.45404 2.55164 2.61876 6 2.24548 2.30932 2.40214 2.49496 2.55879 7 2.20189 2.26274 2.35122 2.43970 2.50055 8 2.15855 2.21672 2.30129 2.38586 2.44402 9 2.11547 2.17124 2.25234 2.33344 2.38922 10 2.07265 2.12633 2.20438 2.28244 2.33611 11 2.03013 2.08199 2.15741 2.23283 2.28470 12 1.98791 2.03824 2.11142 2.18461 2.23494 13 1.94605 1.99510 2.06642 2.13775 2.18680 14 1.90459 1.95260 2.02241 2.09222 2.14023 15 1.86359 1.91078 1.97938 2.04799 2.09517 16 1.82311 1.86966 1.93734 2.00502 2.05157 17 1.78322 1.82929 1.89629 1.96328 2.00936 18 1.74397 1.78971 1.85622 1.92273 1.96847 19 1.70544 1.75096 1.81714 1.88332 1.92883 20 1.66769 1.71307 1.77904 1.84502 1.89039 21 1.63079 1.67608 1.74193 1.80779 1.85308 22 1.59478 1.64002 1.70581 1.77160 1.81684 23 1.55972 1.60493 1.67067 1.73642 1.78163 24 1.52564 1.57083 1.63653 1.70222 1.74741 25 1.49260 1.53773 1.60336 1.66899 1.71412 26 1.46062 1.50567 1.57118 1.63670 1.68175 27 1.42972 1.47466 1.53999 1.60533 1.65026 28 1.39994 1.44470 1.50979 1.57488 1.61964 29 1.37128 1.41581 1.48057 1.54533 1.58987 30 1.34375 1.38800 1.45234 1.51668 1.56093 31 1.31736 1.36126 1.42510 1.48893 1.53283 32 1.29211 1.33560 1.39884 1.46207 1.50556 33 1.26800 1.31101 1.37357 1.43612 1.47914 34 1.24500 1.28749 1.34928 1.41107 1.45356 35 1.22310 1.26502 1.32598 1.38694 1.42886 36 1.20228 1.24360 1.30367 1.36374 1.40505 37 1.18250 1.22319 1.28234 1.34150 1.38218 38 1.16372 1.20377 1.26200 1.32023 1.36028 39 1.14589 1.18532 1.24265 1.29998 1.33941 40 1.12894 1.16779 1.22428 1.28077 1.31962 41 1.11271 1.15106 1.20683 1.26259 1.30094 42 1.09639 1.13439 1.18963 1.24488 1.28287 43 1.07982 1.11760 1.17253 1.22747 1.26525 44 1.06303 1.10072 1.15553 1.21034 1.24803 45 1.04607 1.08378 1.13862 1.19346 1.23117 46 1.02898 1.06681 1.12181 1.17681 1.21463 47 1.01180 1.04982 1.10509 1.16037 1.19838 48 0.99458 1.03284 1.08847 1.14411 1.18237 49 0.97734 1.01589 1.07195 1.12801 1.16656 50 0.96011 0.99899 1.05552 1.11205 1.15092 51 0.94294 0.98216 1.03919 1.09621 1.13543 52 0.92585 0.96541 1.02295 1.08049 1.12005 53 0.90885 0.94877 1.00681 1.06485 1.10477 54 0.89197 0.93223 0.99076 1.04930 1.08956 55 0.87523 0.91581 0.97482 1.03382 1.07440 56 0.85865 0.89952 0.95896 1.01840 1.05928 57 0.84223 0.88337 0.94321 1.00304 1.04419 58 0.82598 0.86736 0.92755 0.98773 1.02911 59 0.80991 0.85150 0.91198 0.97246 1.01405 60 0.79403 0.83579 0.89651 0.95723 0.99899 61 0.77834 0.82023 0.88114 0.94205 0.98394 62 0.76284 0.80482 0.86586 0.92690 0.96888 63 0.74753 0.78956 0.85068 0.91180 0.95383 64 0.73241 0.77446 0.83559 0.89673 0.93878 65 0.71747 0.75950 0.82060 0.88171 0.92374 66 0.70271 0.74468 0.80571 0.86674 0.90871 67 0.68812 0.73001 0.79091 0.85182 0.89371 68 0.67368 0.71546 0.77621 0.83696 0.87874 69 0.65939 0.70104 0.76161 0.82217 0.86382 70 0.64523 0.68674 0.74710 0.80745 0.84896 71 0.63118 0.67254 0.73268 0.79282 0.83419 72 0.61722 0.65844 0.71836 0.77829 0.81951 73 0.60333 0.64441 0.70414 0.76388 0.80495 74 0.58948 0.63045 0.69002 0.74958 0.79055 75 0.57565 0.61654 0.67599 0.73544 0.77632 76 0.56181 0.60266 0.66205 0.72145 0.76230 77 0.54792 0.58879 0.64821 0.70764 0.74851 78 0.53395 0.57491 0.63447 0.69403 0.73500 79 0.51986 0.56100 0.62083 0.68065 0.72179 80 0.50563 0.54705 0.60728 0.66750 0.70892 81 0.49121 0.53302 0.59382 0.65462 0.69643 82 0.47657 0.51891 0.58046 0.64202 0.68435 83 0.46169 0.50468 0.56720 0.62972 0.67271 84 0.44652 0.49033 0.55403 0.61774 0.66155 85 0.43105 0.47584 0.54096 0.60609 0.65087 86 0.41526 0.46119 0.52799 0.59478 0.64072 87 0.39912 0.44638 0.51511 0.58383 0.63109 88 0.38264 0.43141 0.50233 0.57324 0.62202 89 0.36579 0.41626 0.48964 0.56302 0.61349 90 0.34858 0.40093 0.47705 0.55317 0.60552 91 0.33101 0.38542 0.46455 0.54368 0.59810 92 0.31307 0.36975 0.45215 0.53456 0.59123 93 0.29478 0.35390 0.43985 0.52580 0.58492 94 0.27615 0.33788 0.42764 0.51741 0.57914 95 0.25717 0.32170 0.41553 0.50936 0.57389 96 0.23787 0.30536 0.40352 0.50167 0.56917 97 0.21824 0.28888 0.39160 0.49431 0.56495 98 0.19830 0.27225 0.37977 0.48730 0.56125 99 0.17806 0.25547 0.36804 0.48062 0.55803 100 0.15752 0.23857 0.35641 0.47426 0.55531 knots : [1] -1.0 -0.2 1.0 coef : [1] 2.67153 1.55592 0.70045 0.35641 > 1 - sum(cXy $ resid ^ 2) / sum((y - mean(y))^2) # R^2 = 77.2% [1] 0.77644 > showProc.time() Time (user system elapsed): 0.108 0 0.258 > > (cXy.9 <- cobs(X,y, "decrease", tau = 0.9)) qbsks2(): Performing general knot selection ... Deleting unnecessary knots ... COBS regression spline (degree = 2) from call: cobs(x = X, y = y, constraint = "decrease", tau = 0.9) {tau=0.9}-quantile; dimensionality of fit: 6 from {6} x$knots[1:5]: -1.0, -0.6, -0.2, 0.2, 1.0 > (cXy.1 <- cobs(X,y, "decrease", tau = 0.1)) qbsks2(): Performing general knot selection ... WARNING! Since the number of 6 knots selected by AIC reached the upper bound during general knot selection, you might want to rerun cobs with a larger number of knots. Deleting unnecessary knots ... WARNING! Since the number of 6 knots selected by AIC reached the upper bound during general knot selection, you might want to rerun cobs with a larger number of knots. COBS regression spline (degree = 2) from call: cobs(x = X, y = y, constraint = "decrease", tau = 0.1) {tau=0.1}-quantile; dimensionality of fit: 4 from {4} x$knots[1:3]: -1.0, 0.6, 1.0 > (cXy.99<- cobs(X,y, "decrease", tau = 0.99)) qbsks2(): Performing general knot selection ... Deleting unnecessary knots ... COBS regression spline (degree = 2) from call: cobs(x = X, y = y, constraint = "decrease", tau = 0.99) {tau=0.99}-quantile; dimensionality of fit: 4 from {4} x$knots[1:3]: -1.0, -0.2, 1.0 > (cXy.01<- cobs(X,y, "decrease", tau = 0.01)) qbsks2(): Performing general knot selection ... Deleting unnecessary knots ... COBS regression spline (degree = 2) from call: cobs(x = X, y = y, constraint = "decrease", tau = 0.01) {tau=0.01}-quantile; dimensionality of fit: 6 from {6} x$knots[1:5]: -1.0, -0.6, -0.2, 0.2, 1.0 > plot(X,y, xlim = range(xx), + main = "cobs(*, \"decrease\"), N=201, tau = 50% (Med.), 1,10, 90,99%") > lines(predict(cXy, xx), col = 2) > lines(predict(cXy.1, xx), col = 3) > lines(predict(cXy.9, xx), col = 3) > lines(predict(cXy.01, xx), col = 4) > lines(predict(cXy.99, xx), col = 4) > > showProc.time() Time (user system elapsed): 0.5 0 0.686 > > ## Interpolation > cpuTime(cXyI <- cobs(X,y, "decrease", knots = unique(X))) qbsks2(): Performing general knot selection ... Error in x %*% coefficients : NA/NaN/Inf in foreign function call (arg 2) Calls: cpuTime ... cobs -> qbsks2 -> drqssbc2 -> rq.fit.sfnc -> %*% -> %*% In addition: Warning message: In cobs(X, y, "decrease", knots = unique(X)) : The number of knots can't be equal to the number of unique x for degree = 2. 'cobs' has automatically deleted the middle knot. Timing stopped at: 0.699 0.012 0.788 Execution halted Running the tests in ‘tests/multi-constr.R’ failed. Complete output: > #### Examples which use the new feature of more than one 'constraint'. > > suppressMessages(library(cobs)) > > ## do *not* show platform info here (as have *.Rout.save), but in 0_pt-ex.R > options(digits = 6) > > if(!dev.interactive(orNone=TRUE)) pdf("multi-constr.pdf") > > source(system.file("util.R", package = "cobs")) > source(system.file(package="Matrix", "test-tools-1.R", mustWork=TRUE)) Loading required package: tools > ##--> tryCatch.W.E(), showProc.time(), assertError(), relErrV(), ... > Lnx <- Sys.info()[["sysname"]] == "Linux" > isMac <- Sys.info()[["sysname"]] == "Darwin" > x86 <- (arch <- Sys.info()[["machine"]]) == "x86_64" > noLdbl <- (.Machine$sizeof.longdouble <= 8) ## TRUE when --disable-long-double > ## IGNORE_RDIFF_BEGIN > Sys.info() sysname "Linux" release "6.10.11-amd64" version "#1 SMP PREEMPT_DYNAMIC Debian 6.10.11-1 (2024-09-22)" nodename "gimli2" machine "x86_64" login "hornik" user "hornik" effective_user "hornik" > noLdbl [1] FALSE > ## IGNORE_RDIFF_END > > > Rsq <- function(obj) { + stopifnot(inherits(obj, "cobs"), is.numeric(res <- obj$resid)) + 1 - sum(res^2)/obj$SSy + } > list_ <- function (...) `names<-`(list(...), vapply(sys.call()[-1L], as.character, "")) > is.cobs <- function(x) inherits(x, "cobs") > > set.seed(908) > x <- seq(-1,2, len = 50) > f.true <- pnorm(2*x) > y <- f.true + rnorm(50)/10 > plot(x,y); lines(x, f.true, col="gray", lwd=2, lty=3) > > ## constraint on derivative at right end: > (con <- rbind(c(2 , max(x), 0))) # f'(x_n) == 0 [,1] [,2] [,3] [1,] 2 2 0 > > ## Using 'trace = 3' --> 'trace = 2' inside drqssbc2() > > ## Regression splines (lambda = 0) > c2 <- cobs(x,y, trace = 3) qbsks2(): Performing general knot selection ... loo.design2(): -> Xeq 50 x 3 (nz = 150 =^= 1%) loo.design2(): -> Xeq 50 x 4 (nz = 150 =^= 0.75%) loo.design2(): -> Xeq 50 x 5 (nz = 150 =^= 0.6%) loo.design2(): -> Xeq 50 x 6 (nz = 150 =^= 0.5%) loo.design2(): -> Xeq 50 x 7 (nz = 150 =^= 0.43%) Deleting unnecessary knots ... loo.design2(): -> Xeq 50 x 4 (nz = 150 =^= 0.75%) loo.design2(): -> Xeq 50 x 4 (nz = 150 =^= 0.75%) loo.design2(): -> Xeq 50 x 3 (nz = 150 =^= 1%) loo.design2(): -> Xeq 50 x 4 (nz = 150 =^= 0.75%) > c2i <- cobs(x,y, constraint = c("increase"), trace = 3) qbsks2(): Performing general knot selection ... loo.design2(): -> Xeq 50 x 3 (nz = 150 =^= 1%) Xieq 2 x 3 (nz = 6 =^= 1%) loo.design2(): -> Xeq 50 x 4 (nz = 150 =^= 0.75%) Xieq 3 x 4 (nz = 9 =^= 0.75%) loo.design2(): -> Xeq 50 x 5 (nz = 150 =^= 0.6%) Xieq 4 x 5 (nz = 12 =^= 0.6%) loo.design2(): -> Xeq 50 x 6 (nz = 150 =^= 0.5%) Xieq 5 x 6 (nz = 15 =^= 0.5%) loo.design2(): -> Xeq 50 x 7 (nz = 150 =^= 0.43%) Xieq 6 x 7 (nz = 18 =^= 0.43%) Deleting unnecessary knots ... loo.design2(): -> Xeq 50 x 5 (nz = 150 =^= 0.6%) Xieq 4 x 5 (nz = 12 =^= 0.6%) loo.design2(): -> Xeq 50 x 5 (nz = 150 =^= 0.6%) Xieq 4 x 5 (nz = 12 =^= 0.6%) loo.design2(): -> Xeq 50 x 5 (nz = 150 =^= 0.6%) Xieq 4 x 5 (nz = 12 =^= 0.6%) loo.design2(): -> Xeq 50 x 4 (nz = 150 =^= 0.75%) Xieq 3 x 4 (nz = 9 =^= 0.75%) loo.design2(): -> Xeq 50 x 4 (nz = 150 =^= 0.75%) Xieq 3 x 4 (nz = 9 =^= 0.75%) loo.design2(): -> Xeq 50 x 5 (nz = 150 =^= 0.6%) Xieq 4 x 5 (nz = 12 =^= 0.6%) > c2c <- cobs(x,y, constraint = c("concave"), trace = 3) qbsks2(): Performing general knot selection ... loo.design2(): -> Xeq 50 x 3 (nz = 150 =^= 1%) Xieq 1 x 3 (nz = 3 =^= 1%) loo.design2(): -> Xeq 50 x 4 (nz = 150 =^= 0.75%) Xieq 2 x 4 (nz = 6 =^= 0.75%) loo.design2(): -> Xeq 50 x 5 (nz = 150 =^= 0.6%) Xieq 3 x 5 (nz = 9 =^= 0.6%) loo.design2(): -> Xeq 50 x 6 (nz = 150 =^= 0.5%) Xieq 4 x 6 (nz = 12 =^= 0.5%) loo.design2(): -> Xeq 50 x 7 (nz = 150 =^= 0.43%) Xieq 5 x 7 (nz = 15 =^= 0.43%) Deleting unnecessary knots ... loo.design2(): -> Xeq 50 x 3 (nz = 150 =^= 1%) Xieq 1 x 3 (nz = 3 =^= 1%) loo.design2(): -> Xeq 50 x 4 (nz = 150 =^= 0.75%) Xieq 2 x 4 (nz = 6 =^= 0.75%) > > c2IC <- cobs(x,y, constraint = c("inc", "concave"), trace = 3) qbsks2(): Performing general knot selection ... loo.design2(): -> Xeq 50 x 3 (nz = 150 =^= 1%) Xieq 3 x 3 (nz = 9 =^= 1%) loo.design2(): -> Xeq 50 x 4 (nz = 150 =^= 0.75%) Xieq 5 x 4 (nz = 15 =^= 0.75%) loo.design2(): -> Xeq 50 x 5 (nz = 150 =^= 0.6%) Xieq 7 x 5 (nz = 21 =^= 0.6%) loo.design2(): -> Xeq 50 x 6 (nz = 150 =^= 0.5%) Xieq 9 x 6 (nz = 27 =^= 0.5%) loo.design2(): -> Xeq 50 x 7 (nz = 150 =^= 0.43%) Xieq 11 x 7 (nz = 33 =^= 0.43%) Deleting unnecessary knots ... loo.design2(): -> Xeq 50 x 3 (nz = 150 =^= 1%) Xieq 3 x 3 (nz = 9 =^= 1%) > ## here, it's the same as just "i": > all.equal(fitted(c2i), fitted(c2IC)) [1] "Mean relative difference: 0.0808156" > > c1 <- cobs(x,y, degree = 1, trace = 3) qbsks2(): Performing general knot selection ... l1.design2(): -> Xeq 50 x 2 (nz = 100 =^= 1%) l1.design2(): -> Xeq 50 x 3 (nz = 100 =^= 0.67%) l1.design2(): -> Xeq 50 x 4 (nz = 100 =^= 0.5%) l1.design2(): -> Xeq 50 x 5 (nz = 100 =^= 0.4%) l1.design2(): -> Xeq 50 x 6 (nz = 100 =^= 0.33%) Deleting unnecessary knots ... l1.design2(): -> Xeq 50 x 4 (nz = 100 =^= 0.5%) l1.design2(): -> Xeq 50 x 4 (nz = 100 =^= 0.5%) l1.design2(): -> Xeq 50 x 4 (nz = 100 =^= 0.5%) l1.design2(): -> Xeq 50 x 5 (nz = 100 =^= 0.4%) > c1i <- cobs(x,y, degree = 1, constraint = c("increase"), trace = 3) qbsks2(): Performing general knot selection ... l1.design2(): -> Xeq 50 x 2 (nz = 100 =^= 1%) Xieq 1 x 2 (nz = 2 =^= 1%) l1.design2(): -> Xeq 50 x 3 (nz = 100 =^= 0.67%) Xieq 2 x 3 (nz = 4 =^= 0.67%) l1.design2(): -> Xeq 50 x 4 (nz = 100 =^= 0.5%) Xieq 3 x 4 (nz = 6 =^= 0.5%) l1.design2(): -> Xeq 50 x 5 (nz = 100 =^= 0.4%) Xieq 4 x 5 (nz = 8 =^= 0.4%) l1.design2(): -> Xeq 50 x 6 (nz = 100 =^= 0.33%) Xieq 5 x 6 (nz = 10 =^= 0.33%) Deleting unnecessary knots ... l1.design2(): -> Xeq 50 x 4 (nz = 100 =^= 0.5%) Xieq 3 x 4 (nz = 6 =^= 0.5%) l1.design2(): -> Xeq 50 x 4 (nz = 100 =^= 0.5%) Xieq 3 x 4 (nz = 6 =^= 0.5%) l1.design2(): -> Xeq 50 x 4 (nz = 100 =^= 0.5%) Xieq 3 x 4 (nz = 6 =^= 0.5%) l1.design2(): -> Xeq 50 x 5 (nz = 100 =^= 0.4%) Xieq 4 x 5 (nz = 8 =^= 0.4%) > c1c <- cobs(x,y, degree = 1, constraint = c("concave"), trace = 3) qbsks2(): Performing general knot selection ... l1.design2(): -> Xeq 50 x 2 (nz = 100 =^= 1%) l1.design2(): -> Xeq 50 x 3 (nz = 100 =^= 0.67%) Xieq 1 x 3 (nz = 3 =^= 1%) l1.design2(): -> Xeq 50 x 4 (nz = 100 =^= 0.5%) Xieq 2 x 4 (nz = 6 =^= 0.75%) l1.design2(): -> Xeq 50 x 5 (nz = 100 =^= 0.4%) Xieq 3 x 5 (nz = 9 =^= 0.6%) l1.design2(): -> Xeq 50 x 6 (nz = 100 =^= 0.33%) Xieq 4 x 6 (nz = 12 =^= 0.5%) Deleting unnecessary knots ... l1.design2(): -> Xeq 50 x 3 (nz = 100 =^= 0.67%) Xieq 1 x 3 (nz = 3 =^= 1%) l1.design2(): -> Xeq 50 x 3 (nz = 100 =^= 0.67%) Xieq 1 x 3 (nz = 3 =^= 1%) l1.design2(): -> Xeq 50 x 2 (nz = 100 =^= 1%) l1.design2(): -> Xeq 50 x 3 (nz = 100 =^= 0.67%) Xieq 1 x 3 (nz = 3 =^= 1%) > > plot(c1) > lines(predict(c1i), col="forest green") > all.equal(fitted(c1), fitted(c1i), tol = 1e-9)# but not 1e-10 [1] TRUE > > ## now gives warning (not error): > c1IC <- cobs(x,y, degree = 1, constraint = c("inc", "concave"), trace = 3) qbsks2(): Performing general knot selection ... l1.design2(): -> Xeq 50 x 2 (nz = 100 =^= 1%) Xieq 1 x 2 (nz = 2 =^= 1%) l1.design2(): -> Xeq 50 x 3 (nz = 100 =^= 0.67%) Xieq 3 x 3 (nz = 7 =^= 0.78%) l1.design2(): -> Xeq 50 x 4 (nz = 100 =^= 0.5%) Xieq 5 x 4 (nz = 12 =^= 0.6%) l1.design2(): -> Xeq 50 x 5 (nz = 100 =^= 0.4%) Xieq 7 x 5 (nz = 17 =^= 0.49%) l1.design2(): -> Xeq 50 x 6 (nz = 100 =^= 0.33%) Xieq 9 x 6 (nz = 22 =^= 0.41%) Deleting unnecessary knots ... l1.design2(): -> Xeq 50 x 3 (nz = 100 =^= 0.67%) Xieq 3 x 3 (nz = 7 =^= 0.78%) l1.design2(): -> Xeq 50 x 3 (nz = 100 =^= 0.67%) Xieq 3 x 3 (nz = 7 =^= 0.78%) l1.design2(): -> Xeq 50 x 2 (nz = 100 =^= 1%) Xieq 1 x 2 (nz = 2 =^= 1%) l1.design2(): -> Xeq 50 x 3 (nz = 100 =^= 0.67%) Xieq 3 x 3 (nz = 7 =^= 0.78%) Warning messages: 1: In l1.design2(x, w, constraint, ptConstr, knots, pw, nrq = n, nl1, : too few knots ==> nk <= 4; could not add constraint 'concave' 2: In l1.design2(x, w, constraint, ptConstr, knots, pw, nrq = n, nl1, : too few knots ==> nk <= 4; could not add constraint 'concave' > > cp2 <- cobs(x,y, pointwise = con, trace = 3) qbsks2(): Performing general knot selection ... loo.design2(): -> Xeq 50 x 3 (nz = 150 =^= 1%) Xieq 2 x 3 (nz = 6 =^= 1%) loo.design2(): -> Xeq 50 x 4 (nz = 150 =^= 0.75%) Xieq 2 x 4 (nz = 6 =^= 0.75%) loo.design2(): -> Xeq 50 x 5 (nz = 150 =^= 0.6%) Xieq 2 x 5 (nz = 6 =^= 0.6%) loo.design2(): -> Xeq 50 x 6 (nz = 150 =^= 0.5%) Xieq 2 x 6 (nz = 6 =^= 0.5%) loo.design2(): -> Xeq 50 x 7 (nz = 150 =^= 0.43%) Xieq 2 x 7 (nz = 6 =^= 0.43%) Deleting unnecessary knots ... loo.design2(): -> Xeq 50 x 4 (nz = 150 =^= 0.75%) Xieq 2 x 4 (nz = 6 =^= 0.75%) loo.design2(): -> Xeq 50 x 4 (nz = 150 =^= 0.75%) Xieq 2 x 4 (nz = 6 =^= 0.75%) loo.design2(): -> Xeq 50 x 5 (nz = 150 =^= 0.6%) Xieq 2 x 5 (nz = 6 =^= 0.6%) > > ## Here, warning ".. 'ifl'.. " on *some* platforms (e.g. Windows 32bit) : > r2i <- tryCatch.W.E( cobs(x,y, constraint = "increase", pointwise = con) ) qbsks2(): Performing general knot selection ... Deleting unnecessary knots ... > cp2i <- r2i$value > ## IGNORE_RDIFF_BEGIN > r2i$warning NULL > ## IGNORE_RDIFF_END > ## when plotting it, we see that it gave a trivial constant!! > cp2c <- cobs(x,y, constraint = "concave", pointwise = con, trace = 3) qbsks2(): Performing general knot selection ... loo.design2(): -> Xeq 50 x 3 (nz = 150 =^= 1%) Xieq 3 x 3 (nz = 9 =^= 1%) loo.design2(): -> Xeq 50 x 4 (nz = 150 =^= 0.75%) Xieq 4 x 4 (nz = 12 =^= 0.75%) loo.design2(): -> Xeq 50 x 5 (nz = 150 =^= 0.6%) Xieq 5 x 5 (nz = 15 =^= 0.6%) loo.design2(): -> Xeq 50 x 6 (nz = 150 =^= 0.5%) Xieq 6 x 6 (nz = 18 =^= 0.5%) loo.design2(): -> Xeq 50 x 7 (nz = 150 =^= 0.43%) Xieq 7 x 7 (nz = 21 =^= 0.43%) Deleting unnecessary knots ... loo.design2(): -> Xeq 50 x 3 (nz = 150 =^= 1%) Xieq 3 x 3 (nz = 9 =^= 1%) > > ## now gives warning (not error): but no warning on M1 mac -> IGNORE > ## IGNORE_RDIFF_BEGIN > cp2IC <- cobs(x,y, constraint = c("inc", "concave"), pointwise = con, trace = 3) qbsks2(): Performing general knot selection ... loo.design2(): -> Xeq 50 x 3 (nz = 150 =^= 1%) Xieq 5 x 3 (nz = 15 =^= 1%) loo.design2(): -> Xeq 50 x 4 (nz = 150 =^= 0.75%) Xieq 7 x 4 (nz = 21 =^= 0.75%) loo.design2(): -> Xeq 50 x 5 (nz = 150 =^= 0.6%) Xieq 9 x 5 (nz = 27 =^= 0.6%) loo.design2(): -> Xeq 50 x 6 (nz = 150 =^= 0.5%) Xieq 11 x 6 (nz = 33 =^= 0.5%) loo.design2(): -> Xeq 50 x 7 (nz = 150 =^= 0.43%) Xieq 13 x 7 (nz = 39 =^= 0.43%) Deleting unnecessary knots ... loo.design2(): -> Xeq 50 x 3 (nz = 150 =^= 1%) Xieq 5 x 3 (nz = 15 =^= 1%) Error in x %*% coefficients : NA/NaN/Inf in foreign function call (arg 2) Calls: cobs -> qbsks2 -> drqssbc2 -> rq.fit.sfnc -> %*% -> %*% Execution halted Running the tests in ‘tests/wind.R’ failed. Complete output: > suppressMessages(library(cobs)) > > source(system.file("util.R", package = "cobs")) > (doExtra <- doExtras()) [1] FALSE > source(system.file("test-tools-1.R", package="Matrix", mustWork=TRUE)) Loading required package: tools > showProc.time() # timing here (to be faster by default) Time (user system elapsed): 0.002 0 0.002 > > data(DublinWind) > attach(DublinWind)##-> speed & day (instead of "wind.x" & "DUB.") > iday <- sort.list(day) > > if(!dev.interactive(orNone=TRUE)) pdf("wind.pdf", width=10) > > stopifnot(identical(day,c(rep(c(rep(1:365,3),1:366),4), + rep(1:365,2)))) > co50.1 <- cobs(day, speed, constraint= "periodic", tau= .5, lambda= 2.2, + degree = 1) > co50.2 <- cobs(day, speed, constraint= "periodic", tau= .5, lambda= 2.2, + degree = 2) > > showProc.time() Time (user system elapsed): 0.437 0.009 0.453 > > plot(day,speed, pch = ".", col = "gray20") > lines(day[iday], fitted(co50.1)[iday], col="orange", lwd = 2) > lines(day[iday], fitted(co50.2)[iday], col="sky blue", lwd = 2) > rug(knots(co50.1), col=3, lwd=2) > > nknots <- 13 > > > if(doExtra) { + ## Compute the quadratic median smoothing B-spline using SIC + ## lambda selection + co.o50 <- + cobs(day, speed, knots.add = TRUE, constraint="periodic", nknots = nknots, + tau = .5, lambda = -1, method = "uniform") + summary(co.o50) # [does print] + + showProc.time() + + op <- par(mfrow = c(3,1), mgp = c(1.5, 0.6,0), mar=.1 + c(3,3:1)) + with(co.o50, plot(pp.sic ~ pp.lambda, type ="o", + col=2, log = "x", main = "co.o50: periodic")) + with(co.o50, plot(pp.sic ~ pp.lambda, type ="o", ylim = robrng(pp.sic), + col=2, log = "x", main = "co.o50: periodic")) + of <- 0.64430538125795 + with(co.o50, plot(pp.sic - of ~ pp.lambda, type ="o", ylim = c(6e-15, 8e-15), + ylab = paste("sic -",formatC(of, dig=14, small.m = "'")), + col=2, log = "x", main = "co.o50: periodic")) + par(op) + } > > showProc.time() Time (user system elapsed): 0.034 0 0.038 > > ## cobs99: Since SIC chooses a lambda that corresponds to the smoothest > ## possible fit, rerun cobs with a larger lstart value > ## (lstart <- log(.Machine$double.xmax)^3) # 3.57 e9 > ## > co.o50. <- + cobs(day,speed, knots.add = TRUE, constraint = "periodic", nknots = 10, + tau = .5, lambda = -1, method = "quantile") Searching for optimal lambda. This may take a while. While you are waiting, here is something you can consider to speed up the process: (a) Use a smaller number of knots; (b) Set lambda==0 to exclude the penalty term; (c) Use a coarser grid by reducing the argument 'lambda.length' from the default value of 25. The algorithm has converged. You might plot() the returned object (which plots 'sic' against 'lambda') to see if you have found the global minimum of the information criterion so that you can determine if you need to adjust any or all of 'lambda.lo', 'lambda.hi' and 'lambda.length' and refit the model. > summary(co.o50.) COBS smoothing spline (degree = 2) from call: cobs(x = day, y = speed, constraint = "periodic", nknots = 10, method = "quantile", tau = 0.5, lambda = -1, knots.add = TRUE) {tau=0.5}-quantile; dimensionality of fit: 7 from {14,13,11,8,7,30} x$knots[1:10]: 0.999635, 41.000000, 82.000000, ... , 366.000365 lambda = 101002.6, selected via SIC, out of 25 ones. coef[1:12]: 1.121550e+01, 1.139573e+01, 1.089025e+01, 9.954427e+00, 8.148158e+00, ... , 5.373106e-04 R^2 = 8.22% ; empirical tau (over all): 3287/6574 = 0.5 (target tau= 0.5) > summary(pc.5 <- predict(co.o50., interval = "both")) z fit cb.lo cb.up Min. : 0.9996 Min. : 7.212 Min. : 6.351 Min. : 7.951 1st Qu.: 92.2498 1st Qu.: 7.790 1st Qu.: 7.000 1st Qu.: 8.600 Median :183.5000 Median : 9.436 Median : 8.555 Median :10.326 Mean :183.5000 Mean : 9.314 Mean : 8.388 Mean :10.241 3rd Qu.:274.7502 3rd Qu.:10.798 3rd Qu.: 9.716 3rd Qu.:11.787 Max. :366.0004 Max. :11.290 Max. :10.347 Max. :13.416 ci.lo ci.up Min. : 6.782 Min. : 7.598 1st Qu.: 7.370 1st Qu.: 8.213 Median : 8.974 Median : 9.901 Mean : 8.830 Mean : 9.798 3rd Qu.:10.197 3rd Qu.:11.311 Max. :10.797 Max. :12.366 > > showProc.time() Time (user system elapsed): 1.747 0.003 2.061 > > if(doExtra) { ## + repeat.delete.add + co.o50.. <- cobs(day,speed, knots.add = TRUE, repeat.delete.add=TRUE, + constraint = "periodic", nknots = 10, + tau = .5, lambda = -1, method = "quantile") + summary(co.o50..) + showProc.time() + } > > co.o9 <- ## Compute the .9 quantile smoothing B-spline + cobs(day,speed,knots.add = TRUE, constraint = "periodic", nknots = 10, + tau = .9,lambda = -1, method = "uniform") Searching for optimal lambda. This may take a while. While you are waiting, here is something you can consider to speed up the process: (a) Use a smaller number of knots; (b) Set lambda==0 to exclude the penalty term; (c) Use a coarser grid by reducing the argument 'lambda.length' from the default value of 25. Error in x %*% coefficients : NA/NaN/Inf in foreign function call (arg 2) Calls: cobs -> drqssbc2 -> rq.fit.sfnc -> %*% -> %*% Execution halted Flavor: r-devel-linux-x86_64-debian-clang

Version: 1.3-8
Check: examples
Result: ERROR Running examples in ‘cobs-Ex.R’ failed The error most likely occurred in: > ### Name: cobs-methods > ### Title: Methods for COBS Objects > ### Aliases: coef.cobs fitted.cobs knots.cobs print.cobs residuals.cobs > ### summary.cobs > ### Keywords: print > > ### ** Examples > > example(cobs) cobs> x <- seq(-1,3,,150) cobs> y <- (f.true <- pnorm(2*x)) + rnorm(150)/10 cobs> ## specify pointwise constraints (boundary conditions) cobs> con <- rbind(c( 1,min(x),0), # f(min(x)) >= 0 cobs+ c(-1,max(x),1), # f(max(x)) <= 1 cobs+ c(0, 0, 0.5))# f(0) = 0.5 cobs> ## obtain the median REGRESSION B-spline using automatically selected knots cobs> Rbs <- cobs(x,y, constraint= "increase", pointwise = con) qbsks2(): Performing general knot selection ... Deleting unnecessary knots ... Warning in cobs(x, y, constraint = "increase", pointwise = con) : drqssbc2(): Not all flags are normal (== 1), ifl : 21 cobs> Rbs COBS regression spline (degree = 2) from call: cobs(x = x, y = y, constraint = "increase", pointwise = con) **** ERROR in algorithm: ifl = 21 {tau=0.5}-quantile; dimensionality of fit: 5 from {5} x$knots[1:4]: -1.0000040, -0.2214765, 1.3892617, 3.0000040 cobs> plot(Rbs, lwd = 2.5) cobs> lines(spline(x, f.true), col = "gray40") cobs> lines(predict(cobs(x,y)), col = "blue") qbsks2(): Performing general knot selection ... Deleting unnecessary knots ... Warning in cobs(x, y) : drqssbc2(): Not all flags are normal (== 1), ifl : 21 cobs> mtext("cobs(x,y) # completely unconstrained", 3, col= "blue") cobs> ## compute the median SMOOTHING B-spline using automatically chosen lambda cobs> Sbs <- cobs(x,y, constraint="increase", pointwise= con, lambda= -1) Searching for optimal lambda. This may take a while. While you are waiting, here is something you can consider to speed up the process: (a) Use a smaller number of knots; (b) Set lambda==0 to exclude the penalty term; (c) Use a coarser grid by reducing the argument 'lambda.length' from the default value of 25. Warning in min(sol1["k", i.keep]) : no non-missing arguments to min; returning Inf Error in drqssbc2(x, y, w, pw = pw, knots = knots, degree = degree, Tlambda = if (select.lambda) lambdaSet else lambda, : The problem is degenerate for the range of lambda specified. Calls: example ... source -> withVisible -> eval -> eval -> cobs -> drqssbc2 Execution halted Flavor: r-devel-linux-x86_64-fedora-clang

Version: 1.3-8
Check: tests
Result: ERROR Running ‘0_pt-ex.R’ Running ‘ex1.R’ Running ‘ex2-long.R’ [12s/16s] Running ‘ex3.R’ Comparing ‘ex3.Rout’ to ‘ex3.Rout.save’ ... OK Running ‘multi-constr.R’ [7s/11s] Comparing ‘multi-constr.Rout’ to ‘multi-constr.Rout.save’ ... OK Running ‘roof.R’ [6s/12s] Comparing ‘roof.Rout’ to ‘roof.Rout.save’ ... OK Running ‘small-ex.R’ Comparing ‘small-ex.Rout’ to ‘small-ex.Rout.save’ ... OK Running ‘spline-ex.R’ Comparing ‘spline-ex.Rout’ to ‘spline-ex.Rout.save’ ... OK Running ‘temp.R’ Comparing ‘temp.Rout’ to ‘temp.Rout.save’ ...29,31d28 < Warning message: < In cobs(year, temp, knots.add = TRUE, degree = 1, constraint = "increase", : < drqssbc2(): Not all flags are normal (== 1), ifl : 20 35,42c32,35 < < **** ERROR in algorithm: ifl = 20 < < < {tau=0.5}-quantile; dimensionality of fit: 5 from {5} < x$knots[1:5]: 1880, 1908, 1936, 1964, 1992 < coef[1:5]: -0.40707639, -0.31455702, 0.05463725, -0.05314932, 0.29190009 < R^2 = 72.54% ; empirical tau (over all): 56/113 = 0.4955752 (target tau= 0.5) --- > {tau=0.5}-quantile; dimensionality of fit: 4 from {4} > x$knots[1:4]: 1880, 1936, 1964, 1992 > coef[1:4]: -0.47054145, -0.01648649, -0.01648649, 0.27562279 > R^2 = 70.37% ; empirical tau (over all): 56/113 = 0.4955752 (target tau= 0.5) 52,54d44 < Warning message: < In cobs(year, temp, nknots = 9, knots.add = TRUE, degree = 1, constraint = "increase", : < drqssbc2(): Not all flags are normal (== 1), ifl : 22 58,65c48,51 < < **** ERROR in algorithm: ifl = 22 < < < {tau=0.5}-quantile; dimensionality of fit: 5 from {5} < x$knots[1:5]: 1880, 1908, 1936, 1964, 1992 < coef[1:5]: -0.39324840, -0.28115087, 0.05916295, -0.07465159, 0.31227753 < R^2 = 73.22% ; empirical tau (over all): 63/113 = 0.5575221 (target tau= 0.5) --- > {tau=0.5}-quantile; dimensionality of fit: 4 from {4} > x$knots[1:4]: 1880, 1936, 1964, 1992 > coef[1:4]: -0.47054145, -0.01648649, -0.01648649, 0.27562279 > R^2 = 70.37% ; empirical tau (over all): 56/113 = 0.4955752 (target tau= 0.5) 72,75c58,61 < {tau=0.1}-quantile; dimensionality of fit: 5 from {5} < x$knots[1:5]: 1880, 1908, 1936, 1964, 1992 < coef[1:5]: -0.5515010, -0.4255000, -0.1700000, -0.1700000, 0.1300024 < empirical tau (over all): 11/113 = 0.09734513 (target tau= 0.1) --- > {tau=0.1}-quantile; dimensionality of fit: 4 from {4} > x$knots[1:4]: 1880, 1936, 1964, 1992 > coef[1:4]: -0.5700016, -0.1700000, -0.1700000, 0.1300024 > empirical tau (over all): 12/113 = 0.1061947 (target tau= 0.1) 78,80d63 < Warning message: < In cobs(year, temp, nknots = length(a50$knots), knots = a50$knot, : < drqssbc2(): Not all flags are normal (== 1), ifl : 22 84,91c67,70 < < **** ERROR in algorithm: ifl = 22 < < < {tau=0.9}-quantile; dimensionality of fit: 5 from {5} < x$knots[1:5]: 1880, 1908, 1936, 1964, 1992 < coef[1:5]: -0.39324885, -0.28115087, 0.05916295, -0.07465159, 0.31227907 < empirical tau (over all): 63/113 = 0.5575221 (target tau= 0.9) --- > {tau=0.9}-quantile; dimensionality of fit: 4 from {4} > x$knots[1:4]: 1880, 1936, 1964, 1992 > coef[1:4]: -0.2576939, 0.1300000, 0.1300000, 0.4961568 > empirical tau (over all): 104/113 = 0.920354 (target tau= 0.9) 94,96c73 < [1] 1 2 9 10 17 18 20 21 22 23 26 27 35 36 42 47 48 49 52 < [20] 53 58 59 61 62 63 64 65 68 73 74 78 79 80 81 82 83 84 88 < [39] 90 91 94 98 100 101 102 104 108 109 111 112 --- > [1] 10 18 21 22 47 61 74 102 111 98c75 < [1] 5 8 25 38 39 77 85 86 92 95 97 --- > [1] 5 8 25 28 38 39 85 86 92 95 97 113 103,215c80,192 < [1,] 1880 -0.393247953 -0.568567598 -0.217928308 -0.497693198 -0.2888027083 < [2,] 1881 -0.389244486 -0.556686706 -0.221802266 -0.488996819 -0.2894921527 < [3,] 1882 -0.385241019 -0.544932639 -0.225549398 -0.480375996 -0.2901060418 < [4,] 1883 -0.381237552 -0.533324789 -0.229150314 -0.471842280 -0.2906328235 < [5,] 1884 -0.377234084 -0.521886218 -0.232581951 -0.463409410 -0.2910587589 < [6,] 1885 -0.373230617 -0.510644405 -0.235816829 -0.455093758 -0.2913674769 < [7,] 1886 -0.369227150 -0.499632120 -0.238822180 -0.446914845 -0.2915394558 < [8,] 1887 -0.365223683 -0.488888394 -0.241558972 -0.438895923 -0.2915514428 < [9,] 1888 -0.361220216 -0.478459556 -0.243980875 -0.431064594 -0.2913758376 < [10,] 1889 -0.357216749 -0.468400213 -0.246033284 -0.423453388 -0.2909801092 < [11,] 1890 -0.353213282 -0.458773976 -0.247652588 -0.416100202 -0.2903263615 < [12,] 1891 -0.349209814 -0.449653605 -0.248766024 -0.409048381 -0.2893712477 < [13,] 1892 -0.345206347 -0.441120098 -0.249292596 -0.402346180 -0.2880665146 < [14,] 1893 -0.341202880 -0.433260133 -0.249145628 -0.396045236 -0.2863605248 < [15,] 1894 -0.337199413 -0.426161346 -0.248237480 -0.390197757 -0.2842010691 < [16,] 1895 -0.333195946 -0.419905293 -0.246486599 -0.384852330 -0.2815395617 < [17,] 1896 -0.329192479 -0.414558712 -0.243826246 -0.380048714 -0.2783362437 < [18,] 1897 -0.325189012 -0.410164739 -0.240213284 -0.375812606 -0.2745654171 < [19,] 1898 -0.321185545 -0.406736420 -0.235634669 -0.372151779 -0.2702193101 < [20,] 1899 -0.317182077 -0.404254622 -0.230109533 -0.369054834 -0.2653093212 < [21,] 1900 -0.313178610 -0.402671075 -0.223686145 -0.366493014 -0.2598642062 < [22,] 1901 -0.309175143 -0.401915491 -0.216434795 -0.364424447 -0.2539258394 < [23,] 1902 -0.305171676 -0.401904507 -0.208438845 -0.362799469 -0.2475438831 < [24,] 1903 -0.301168209 -0.402550192 -0.199786225 -0.361565696 -0.2407707212 < [25,] 1904 -0.297164742 -0.403766666 -0.190562818 -0.360671966 -0.2336575172 < [26,] 1905 -0.293161275 -0.405474370 -0.180848179 -0.360070883 -0.2262516664 < [27,] 1906 -0.289157807 -0.407602268 -0.170713347 -0.359720126 -0.2185954887 < [28,] 1907 -0.285154340 -0.410088509 -0.160220171 -0.359582850 -0.2107258307 < [29,] 1908 -0.281150873 -0.412880143 -0.149421603 -0.359627508 -0.2026742377 < [30,] 1909 -0.268996808 -0.394836115 -0.143157501 -0.343964546 -0.1940290700 < [31,] 1910 -0.256842743 -0.376961386 -0.136724100 -0.328402442 -0.1852830438 < [32,] 1911 -0.244688678 -0.359281315 -0.130096042 -0.312956304 -0.1764210522 < [33,] 1912 -0.232534613 -0.341825431 -0.123243796 -0.297643724 -0.1674255025 < [34,] 1913 -0.220380548 -0.324627946 -0.116133151 -0.282485083 -0.1582760137 < [35,] 1914 -0.208226483 -0.307728160 -0.108724807 -0.267503793 -0.1489491732 < [36,] 1915 -0.196072418 -0.291170651 -0.100974185 -0.252726413 -0.1394184235 < [37,] 1916 -0.183918353 -0.275005075 -0.092831631 -0.238182523 -0.1296541835 < [38,] 1917 -0.171764288 -0.259285340 -0.084243236 -0.223904239 -0.1196243373 < [39,] 1918 -0.159610223 -0.244067933 -0.075152513 -0.209925213 -0.1092952334 < [40,] 1919 -0.147456158 -0.229409203 -0.065503113 -0.196279015 -0.0986333019 < [41,] 1920 -0.135302093 -0.215361603 -0.055242584 -0.182996891 -0.0876072953 < [42,] 1921 -0.123148028 -0.201969188 -0.044326869 -0.170105089 -0.0761909673 < [43,] 1922 -0.110993963 -0.189263062 -0.032724864 -0.157622139 -0.0643657877 < [44,] 1923 -0.098839898 -0.177257723 -0.020422074 -0.145556676 -0.0521231208 < [45,] 1924 -0.086685833 -0.165949224 -0.007422442 -0.133906350 -0.0394653164 < [46,] 1925 -0.074531768 -0.155315688 0.006252152 -0.122658128 -0.0264054087 < [47,] 1926 -0.062377703 -0.145320002 0.020564595 -0.111789900 -0.0129655072 < [48,] 1927 -0.050223638 -0.135913981 0.035466704 -0.101272959 0.0008256822 < [49,] 1928 -0.038069573 -0.127043003 0.050903856 -0.091074767 0.0149356198 < [50,] 1929 -0.025915508 -0.118650261 0.066819244 -0.081161479 0.0293304619 < [51,] 1930 -0.013761444 -0.110680090 0.083157203 -0.071499934 0.0439770474 < [52,] 1931 -0.001607379 -0.103080234 0.099865477 -0.062059002 0.0588442451 < [53,] 1932 0.010546686 -0.095803129 0.116896502 -0.052810346 0.0739037194 < [54,] 1933 0.022700751 -0.088806436 0.134207939 -0.043728744 0.0891302464 < [55,] 1934 0.034854816 -0.082053049 0.151762682 -0.034792088 0.1045017213 < [56,] 1935 0.047008881 -0.075510798 0.169528561 -0.025981216 0.1199989785 < [57,] 1936 0.059162946 -0.069151984 0.187477877 -0.017279624 0.1356055167 < [58,] 1937 0.054383856 -0.068135824 0.176903535 -0.018606241 0.1273739530 < [59,] 1938 0.049604765 -0.067303100 0.166512631 -0.020042139 0.1192516703 < [60,] 1939 0.044825675 -0.066681512 0.156332862 -0.021603820 0.1112551700 < [61,] 1940 0.040046585 -0.066303231 0.146396400 -0.023310448 0.1034036175 < [62,] 1941 0.035267494 -0.066205361 0.136740349 -0.025184129 0.0957191177 < [63,] 1942 0.030488404 -0.066430243 0.127407050 -0.027250087 0.0882268946 < [64,] 1943 0.025709313 -0.067025439 0.118444066 -0.029536657 0.0809552836 < [65,] 1944 0.020930223 -0.068043207 0.109903653 -0.032074970 0.0739354160 < [66,] 1945 0.016151132 -0.069539210 0.101841475 -0.034898188 0.0672004530 < [67,] 1946 0.011372042 -0.071570257 0.094314341 -0.038040154 0.0607842381 < [68,] 1947 0.006592951 -0.074190969 0.087376871 -0.041533408 0.0547193111 < [69,] 1948 0.001813861 -0.077449530 0.081077252 -0.045406656 0.0490343779 < [70,] 1949 -0.002965230 -0.081383054 0.075452595 -0.049682007 0.0437515481 < [71,] 1950 -0.007744320 -0.086013419 0.070524779 -0.054372496 0.0388838557 < [72,] 1951 -0.012523410 -0.091344570 0.066297749 -0.059480471 0.0344336506 < [73,] 1952 -0.017302501 -0.097362010 0.062757009 -0.064997299 0.0303922971 < [74,] 1953 -0.022081591 -0.104034636 0.059871454 -0.070904448 0.0267412650 < [75,] 1954 -0.026860682 -0.111318392 0.057597028 -0.077175672 0.0234543081 < [76,] 1955 -0.031639772 -0.119160824 0.055881280 -0.083779723 0.0205001786 < [77,] 1956 -0.036418863 -0.127505585 0.054667859 -0.090683032 0.0178453070 < [78,] 1957 -0.041197953 -0.136296186 0.053900280 -0.097851948 0.0154560415 < [79,] 1958 -0.045977044 -0.145478720 0.053524633 -0.105254354 0.0133002664 < [80,] 1959 -0.050756134 -0.155003532 0.053491263 -0.112860669 0.0113484004 < [81,] 1960 -0.055535225 -0.164826042 0.053755593 -0.120644335 0.0095738862 < [82,] 1961 -0.060314315 -0.174906951 0.054278321 -0.128581941 0.0079533109 < [83,] 1962 -0.065093405 -0.185212049 0.055025238 -0.136653105 0.0064662939 < [84,] 1963 -0.069872496 -0.195711803 0.055966811 -0.144840234 0.0050952422 < [85,] 1964 -0.074651586 -0.206380857 0.057077684 -0.153128222 0.0038250490 < [86,] 1965 -0.060832745 -0.185766914 0.064101424 -0.135261254 0.0135957648 < [87,] 1966 -0.047013903 -0.165458364 0.071430557 -0.117576222 0.0235484155 < [88,] 1967 -0.033195062 -0.145508157 0.079118034 -0.100104670 0.0337145466 < [89,] 1968 -0.019376220 -0.125978144 0.087225704 -0.082883444 0.0441310044 < [90,] 1969 -0.005557378 -0.106939362 0.095824605 -0.065954866 0.0548401092 < [91,] 1970 0.008261463 -0.088471368 0.104994294 -0.049366330 0.0658892560 < [92,] 1971 0.022080305 -0.070660043 0.114820653 -0.033168999 0.0773296085 < [93,] 1972 0.035899146 -0.053593318 0.125391611 -0.017415258 0.0892135504 < [94,] 1973 0.049717988 -0.037354556 0.136790532 -0.002154768 0.1015907442 < [95,] 1974 0.063536830 -0.022014046 0.149087705 0.012570595 0.1145030640 < [96,] 1975 0.077355671 -0.007620056 0.162331398 0.026732077 0.1279792657 < [97,] 1976 0.091174513 0.005808280 0.176540746 0.040318278 0.1420307479 < [98,] 1977 0.104993354 0.018284008 0.191702701 0.053336970 0.1566497385 < [99,] 1978 0.118812196 0.029850263 0.207774129 0.065813852 0.1718105399 < [100,] 1979 0.132631038 0.040573785 0.224688290 0.077788682 0.1874733929 < [101,] 1980 0.146449879 0.050536128 0.242363630 0.089310046 0.2035897119 < [102,] 1981 0.160268721 0.059824930 0.260712511 0.100430154 0.2201072876 < [103,] 1982 0.174087562 0.068526868 0.279648256 0.111200642 0.2369744825 < [104,] 1983 0.187906404 0.076722940 0.299089868 0.121669764 0.2541430435 < [105,] 1984 0.201725246 0.084485905 0.318964586 0.131880867 0.2715696238 < [106,] 1985 0.215544087 0.091879376 0.339208798 0.141871847 0.2892163274 < [107,] 1986 0.229362929 0.098957959 0.359767899 0.151675234 0.3070506231 < [108,] 1987 0.243181770 0.105767982 0.380595558 0.161318630 0.3250449108 < [109,] 1988 0.257000612 0.112348478 0.401652745 0.170825286 0.3431759375 < [110,] 1989 0.270819454 0.118732216 0.422906691 0.180214725 0.3614241817 < [111,] 1990 0.284638295 0.124946675 0.444329916 0.189503318 0.3797732721 < [112,] 1991 0.298457137 0.131014917 0.465899357 0.198704804 0.3982094699 < [113,] 1992 0.312275978 0.136956333 0.487595623 0.207830734 0.4167212231 --- > [1,] 1880 -0.470540541 -0.580395233 -0.360685849 -0.541226637 -0.399854444 > [2,] 1881 -0.462432432 -0.569650451 -0.355214414 -0.531421959 -0.393442906 > [3,] 1882 -0.454324324 -0.558928137 -0.349720511 -0.521631738 -0.387016910 > [4,] 1883 -0.446216216 -0.548230020 -0.344202412 -0.511857087 -0.380575346 > [5,] 1884 -0.438108108 -0.537557989 -0.338658227 -0.502099220 -0.374116996 > [6,] 1885 -0.430000000 -0.526914115 -0.333085885 -0.492359472 -0.367640528 > [7,] 1886 -0.421891892 -0.516300667 -0.327483116 -0.482639300 -0.361144484 > [8,] 1887 -0.413783784 -0.505720132 -0.321847435 -0.472940307 -0.354627261 > [9,] 1888 -0.405675676 -0.495175238 -0.316176113 -0.463264247 -0.348087105 > [10,] 1889 -0.397567568 -0.484668976 -0.310466159 -0.453613044 -0.341522091 > [11,] 1890 -0.389459459 -0.474204626 -0.304714293 -0.443988810 -0.334930108 > [12,] 1891 -0.381351351 -0.463785782 -0.298916920 -0.434393857 -0.328308845 > [13,] 1892 -0.373243243 -0.453416379 -0.293070107 -0.424830717 -0.321655770 > [14,] 1893 -0.365135135 -0.443100719 -0.287169552 -0.415302157 -0.314968113 > [15,] 1894 -0.357027027 -0.432843496 -0.281210558 -0.405811200 -0.308242854 > [16,] 1895 -0.348918919 -0.422649821 -0.275188017 -0.396361132 -0.301476706 > [17,] 1896 -0.340810811 -0.412525238 -0.269096384 -0.386955521 -0.294666101 > [18,] 1897 -0.332702703 -0.402475737 -0.262929668 -0.377598222 -0.287807183 > [19,] 1898 -0.324594595 -0.392507759 -0.256681430 -0.368293379 -0.280895810 > [20,] 1899 -0.316486486 -0.382628180 -0.250344793 -0.359045416 -0.273927557 > [21,] 1900 -0.308378378 -0.372844288 -0.243912468 -0.349859024 -0.266897733 > [22,] 1901 -0.300270270 -0.363163733 -0.237376807 -0.340739124 -0.259801417 > [23,] 1902 -0.292162162 -0.353594450 -0.230729874 -0.331690821 -0.252633503 > [24,] 1903 -0.284054054 -0.344144557 -0.223963551 -0.322719340 -0.245388768 > [25,] 1904 -0.275945946 -0.334822217 -0.217069675 -0.313829934 -0.238061958 > [26,] 1905 -0.267837838 -0.325635470 -0.210040206 -0.305027774 -0.230647901 > [27,] 1906 -0.259729730 -0.316592032 -0.202867427 -0.296317828 -0.223141632 > [28,] 1907 -0.251621622 -0.307699075 -0.195544168 -0.287704708 -0.215538535 > [29,] 1908 -0.243513514 -0.298962989 -0.188064038 -0.279192527 -0.207834500 > [30,] 1909 -0.235405405 -0.290389150 -0.180421661 -0.270784743 -0.200026067 > [31,] 1910 -0.227297297 -0.281981702 -0.172612893 -0.262484025 -0.192110570 > [32,] 1911 -0.219189189 -0.273743385 -0.164634993 -0.254292134 -0.184086245 > [33,] 1912 -0.211081081 -0.265675409 -0.156486753 -0.246209849 -0.175952313 > [34,] 1913 -0.202972973 -0.257777400 -0.148168546 -0.238236929 -0.167709017 > [35,] 1914 -0.194864865 -0.250047417 -0.139682313 -0.230372126 -0.159357604 > [36,] 1915 -0.186756757 -0.242482039 -0.131031475 -0.222613238 -0.150900276 > [37,] 1916 -0.178648649 -0.235076516 -0.122220781 -0.214957209 -0.142340088 > [38,] 1917 -0.170540541 -0.227824968 -0.113256113 -0.207400255 -0.133680826 > [39,] 1918 -0.162432432 -0.220720606 -0.104144259 -0.199938008 -0.124926856 > [40,] 1919 -0.154324324 -0.213755974 -0.094892674 -0.192565671 -0.116082978 > [41,] 1920 -0.146216216 -0.206923176 -0.085509256 -0.185278162 -0.107154270 > [42,] 1921 -0.138108108 -0.200214092 -0.076002124 -0.178070257 -0.098145959 > [43,] 1922 -0.130000000 -0.193620560 -0.066379440 -0.170936704 -0.089063296 > [44,] 1923 -0.121891892 -0.187134533 -0.056649251 -0.163872326 -0.079911458 > [45,] 1924 -0.113783784 -0.180748200 -0.046819367 -0.156872096 -0.070695472 > [46,] 1925 -0.105675676 -0.174454074 -0.036897277 -0.149931196 -0.061420156 > [47,] 1926 -0.097567568 -0.168245056 -0.026890080 -0.143045058 -0.052090077 > [48,] 1927 -0.089459459 -0.162114471 -0.016804448 -0.136209390 -0.042709529 > [49,] 1928 -0.081351351 -0.156056093 -0.006646610 -0.129420182 -0.033282521 > [50,] 1929 -0.073243243 -0.150064140 0.003577654 -0.122673716 -0.023812771 > [51,] 1930 -0.065135135 -0.144133276 0.013863006 -0.115966557 -0.014303713 > [52,] 1931 -0.057027027 -0.138258588 0.024204534 -0.109295545 -0.004758509 > [53,] 1932 -0.048918919 -0.132435569 0.034597732 -0.102657780 0.004819942 > [54,] 1933 -0.040810811 -0.126660095 0.045038473 -0.096050607 0.014428985 > [55,] 1934 -0.032702703 -0.120928393 0.055522988 -0.089471600 0.024066194 > [56,] 1935 -0.024594595 -0.115237021 0.066047832 -0.082918542 0.033729353 > [57,] 1936 -0.016486486 -0.109582838 0.076609865 -0.076389415 0.043416442 > [58,] 1937 -0.016486486 -0.105401253 0.072428280 -0.073698770 0.040725797 > [59,] 1938 -0.016486486 -0.101403226 0.068430253 -0.071126236 0.038153263 > [60,] 1939 -0.016486486 -0.097615899 0.064642926 -0.068689277 0.035716305 > [61,] 1940 -0.016486486 -0.094070136 0.061097163 -0.066407753 0.033434780 > [62,] 1941 -0.016486486 -0.090800520 0.057827547 -0.064303916 0.031330943 > [63,] 1942 -0.016486486 -0.087845022 0.054872049 -0.062402198 0.029429225 > [64,] 1943 -0.016486486 -0.085244160 0.052271187 -0.060728671 0.027755698 > [65,] 1944 -0.016486486 -0.083039523 0.050066550 -0.059310095 0.026337122 > [66,] 1945 -0.016486486 -0.081271575 0.048298602 -0.058172508 0.025199535 > [67,] 1946 -0.016486486 -0.079976806 0.047003833 -0.057339388 0.024366415 > [68,] 1947 -0.016486486 -0.079184539 0.046211566 -0.056829602 0.023856629 > [69,] 1948 -0.016486486 -0.078913907 0.045940934 -0.056655464 0.023682491 > [70,] 1949 -0.016486486 -0.079171667 0.046198694 -0.056821320 0.023848347 > [71,] 1950 -0.016486486 -0.079951382 0.046978409 -0.057323028 0.024350055 > [72,] 1951 -0.016486486 -0.081234197 0.048261224 -0.058148457 0.025175484 > [73,] 1952 -0.016486486 -0.082991006 0.050018033 -0.059278877 0.026305904 > [74,] 1953 -0.016486486 -0.085185454 0.052212481 -0.060690897 0.027717924 > [75,] 1954 -0.016486486 -0.087777140 0.054804167 -0.062358519 0.029385546 > [76,] 1955 -0.016486486 -0.090724471 0.057751498 -0.064254982 0.031282009 > [77,] 1956 -0.016486486 -0.093986883 0.061013910 -0.066354184 0.033381211 > [78,] 1957 -0.016486486 -0.097526332 0.064553359 -0.068631645 0.035658672 > [79,] 1958 -0.016486486 -0.101308145 0.068335172 -0.071065056 0.038092083 > [80,] 1959 -0.016486486 -0.105301366 0.072328393 -0.073634498 0.040661525 > [81,] 1960 -0.016486486 -0.109478765 0.076505793 -0.076322449 0.043349476 > [82,] 1961 -0.016486486 -0.113816631 0.080843658 -0.079113653 0.046140680 > [83,] 1962 -0.016486486 -0.118294454 0.085321481 -0.081994911 0.049021938 > [84,] 1963 -0.016486486 -0.122894566 0.089921593 -0.084954858 0.051981885 > [85,] 1964 -0.016486486 -0.127601781 0.094628808 -0.087983719 0.055010746 > [86,] 1965 -0.006054054 -0.111440065 0.099331957 -0.073864774 0.061756666 > [87,] 1966 0.004378378 -0.095541433 0.104298190 -0.059915111 0.068671868 > [88,] 1967 0.014810811 -0.079951422 0.109573043 -0.046164030 0.075785651 > [89,] 1968 0.025243243 -0.064723125 0.115209611 -0.032645694 0.083132181 > [90,] 1969 0.035675676 -0.049917365 0.121268716 -0.019399240 0.090750592 > [91,] 1970 0.046108108 -0.035602017 0.127818233 -0.006468342 0.098684559 > [92,] 1971 0.056540541 -0.021849988 0.134931069 0.006100087 0.106980994 > [93,] 1972 0.066972973 -0.008735416 0.142681362 0.018258345 0.115687601 > [94,] 1973 0.077405405 0.003672103 0.151138707 0.029961648 0.124849163 > [95,] 1974 0.087837838 0.015314778 0.160360898 0.041172812 0.134502863 > [96,] 1975 0.098270270 0.026154092 0.170386449 0.051867053 0.144673488 > [97,] 1976 0.108702703 0.036176523 0.181228883 0.062035669 0.155369736 > [98,] 1977 0.119135135 0.045395695 0.192874575 0.071687429 0.166582842 > [99,] 1978 0.129567568 0.053850212 0.205284923 0.080847170 0.178287965 > [100,] 1979 0.140000000 0.061597925 0.218402075 0.089552117 0.190447883 > [101,] 1980 0.150432432 0.068708461 0.232156404 0.097847072 0.203017792 > [102,] 1981 0.160864865 0.075255962 0.246473767 0.105779742 0.215949987 > [103,] 1982 0.171297297 0.081313324 0.261281271 0.113397031 0.229197563 > [104,] 1983 0.181729730 0.086948395 0.276511065 0.120742598 0.242716862 > [105,] 1984 0.192162162 0.092221970 0.292102355 0.127855559 0.256468766 > [106,] 1985 0.202594595 0.097187112 0.308002077 0.134770059 0.270419130 > [107,] 1986 0.213027027 0.101889333 0.324164721 0.141515381 0.284538673 > [108,] 1987 0.223459459 0.106367224 0.340551695 0.148116359 0.298802560 > [109,] 1988 0.233891892 0.110653299 0.357130484 0.154593913 0.313189871 > [110,] 1989 0.244324324 0.114774857 0.373873791 0.160965608 0.327683041 > [111,] 1990 0.254756757 0.118754798 0.390758715 0.167246179 0.342267335 > [112,] 1991 0.265189189 0.122612348 0.407766030 0.173447997 0.356930381 > [113,] 1992 0.275621622 0.126363680 0.424879564 0.179581470 0.371661774 218,330c195,307 < [1,] 1880 -0.551500000 -0.8692435 -0.233756532 -0.74079307 -0.362206927 < [2,] 1881 -0.547000000 -0.8504667 -0.243533314 -0.72778780 -0.366212204 < [3,] 1882 -0.542500000 -0.8319198 -0.253080242 -0.71491945 -0.370080546 < [4,] 1883 -0.538000000 -0.8136378 -0.262362171 -0.70220898 -0.373791017 < [5,] 1884 -0.533500000 -0.7956627 -0.271337305 -0.68968128 -0.377318719 < [6,] 1885 -0.529000000 -0.7780442 -0.279955841 -0.67736602 -0.380633979 < [7,] 1886 -0.524500000 -0.7608416 -0.288158389 -0.66529858 -0.383701418 < [8,] 1887 -0.520000000 -0.7441258 -0.295874209 -0.65352111 -0.386478893 < [9,] 1888 -0.515500000 -0.7279807 -0.303019336 -0.64208362 -0.388916382 < [10,] 1889 -0.511000000 -0.7125052 -0.309494803 -0.63104507 -0.390954927 < [11,] 1890 -0.506500000 -0.6978147 -0.315185325 -0.62047415 -0.392525847 < [12,] 1891 -0.502000000 -0.6840410 -0.319959029 -0.61044942 -0.393550580 < [13,] 1892 -0.497500000 -0.6713309 -0.323669122 -0.60105832 -0.393941676 < [14,] 1893 -0.493000000 -0.6598415 -0.326158511 -0.59239445 -0.393605547 < [15,] 1894 -0.488500000 -0.6497316 -0.327268365 -0.58455243 -0.392447572 < [16,] 1895 -0.484000000 -0.6411491 -0.326850877 -0.57762031 -0.390379695 < [17,] 1896 -0.479500000 -0.6342149 -0.324785091 -0.57167014 -0.387329858 < [18,] 1897 -0.475000000 -0.6290072 -0.320992831 -0.56674851 -0.383251488 < [19,] 1898 -0.470500000 -0.6255495 -0.315450451 -0.56286950 -0.378130499 < [20,] 1899 -0.466000000 -0.6238074 -0.308192629 -0.56001245 -0.371987550 < [21,] 1900 -0.461500000 -0.6236932 -0.299306846 -0.55812524 -0.364874755 < [22,] 1901 -0.457000000 -0.6250795 -0.288920492 -0.55713199 -0.356868008 < [23,] 1902 -0.452500000 -0.6278154 -0.277184649 -0.55694269 -0.348057313 < [24,] 1903 -0.448000000 -0.6317413 -0.264258680 -0.55746239 -0.338537611 < [25,] 1904 -0.443500000 -0.6367018 -0.250298234 -0.55859837 -0.328401628 < [26,] 1905 -0.439000000 -0.6425525 -0.235447498 -0.56026474 -0.317735261 < [27,] 1906 -0.434500000 -0.6491648 -0.219835216 -0.56238479 -0.306615211 < [28,] 1907 -0.430000000 -0.6564265 -0.203573485 -0.56489174 -0.295108256 < [29,] 1908 -0.425500000 -0.6642417 -0.186758271 -0.56772843 -0.283271568 < [30,] 1909 -0.416375000 -0.6444420 -0.188308043 -0.55224402 -0.280505976 < [31,] 1910 -0.407250000 -0.6249490 -0.189550984 -0.53694241 -0.277557591 < [32,] 1911 -0.398125000 -0.6058089 -0.190441134 -0.52185096 -0.274399035 < [33,] 1912 -0.389000000 -0.5870750 -0.190924973 -0.50700158 -0.270998423 < [34,] 1913 -0.379875000 -0.5688095 -0.190940499 -0.49243118 -0.267318816 < [35,] 1914 -0.370750000 -0.5510835 -0.190416485 -0.47818222 -0.263317783 < [36,] 1915 -0.361625000 -0.5339779 -0.189272139 -0.46430281 -0.258947192 < [37,] 1916 -0.352500000 -0.5175825 -0.187417468 -0.45084657 -0.254153431 < [38,] 1917 -0.343375000 -0.5019952 -0.184754769 -0.43787171 -0.248878295 < [39,] 1918 -0.334250000 -0.4873183 -0.181181668 -0.42543921 -0.243060793 < [40,] 1919 -0.325125000 -0.4736540 -0.176596039 -0.41360991 -0.236640086 < [41,] 1920 -0.316000000 -0.4610972 -0.170902819 -0.40244046 -0.229559541 < [42,] 1921 -0.306875000 -0.4497278 -0.164022164 -0.39197841 -0.221771591 < [43,] 1922 -0.297750000 -0.4396023 -0.155897699 -0.38225735 -0.213242652 < [44,] 1923 -0.288625000 -0.4307468 -0.146503154 -0.37329293 -0.203957073 < [45,] 1924 -0.279500000 -0.4231543 -0.135845678 -0.36508089 -0.193919112 < [46,] 1925 -0.270375000 -0.4167851 -0.123964922 -0.35759761 -0.183152393 < [47,] 1926 -0.261250000 -0.4115719 -0.110928148 -0.35080301 -0.171696986 < [48,] 1927 -0.252125000 -0.4074273 -0.096822686 -0.34464508 -0.159604916 < [49,] 1928 -0.243000000 -0.4042525 -0.081747527 -0.33906484 -0.146935158 < [50,] 1929 -0.233875000 -0.4019444 -0.065805632 -0.33400095 -0.133749048 < [51,] 1930 -0.224750000 -0.4004021 -0.049097883 -0.32939331 -0.120106687 < [52,] 1931 -0.215625000 -0.3995310 -0.031718987 -0.32518550 -0.106064496 < [53,] 1932 -0.206500000 -0.3992449 -0.013755146 -0.32132617 -0.091673830 < [54,] 1933 -0.197374999 -0.3994669 0.004716902 -0.31776960 -0.076980402 < [55,] 1934 -0.188249999 -0.4001299 0.023629911 -0.31447572 -0.062024276 < [56,] 1935 -0.179124999 -0.4011756 0.042925575 -0.31140981 -0.046840186 < [57,] 1936 -0.169999999 -0.4025537 0.062553694 -0.30854196 -0.031458039 < [58,] 1937 -0.169999999 -0.3920506 0.052050575 -0.30228481 -0.037715186 < [59,] 1938 -0.169999999 -0.3818799 0.041879911 -0.29622572 -0.043774276 < [60,] 1939 -0.169999999 -0.3720919 0.032091902 -0.29039460 -0.049605402 < [61,] 1940 -0.169999999 -0.3627449 0.022744854 -0.28482617 -0.055173829 < [62,] 1941 -0.169999999 -0.3539060 0.013906014 -0.27956050 -0.060439496 < [63,] 1942 -0.169999999 -0.3456521 0.005652118 -0.27464331 -0.065356687 < [64,] 1943 -0.169999999 -0.3380694 -0.001930632 -0.27012595 -0.069874048 < [65,] 1944 -0.169999999 -0.3312525 -0.008747527 -0.26606484 -0.073935158 < [66,] 1945 -0.169999999 -0.3253023 -0.014697685 -0.26252008 -0.077479916 < [67,] 1946 -0.169999999 -0.3203219 -0.019678148 -0.25955301 -0.080446986 < [68,] 1947 -0.169999999 -0.3164101 -0.023589921 -0.25722261 -0.082777393 < [69,] 1948 -0.169999999 -0.3136543 -0.026345677 -0.25558089 -0.084419112 < [70,] 1949 -0.169999999 -0.3121218 -0.027878154 -0.25466793 -0.085332072 < [71,] 1950 -0.169999999 -0.3118523 -0.028147699 -0.25450735 -0.085492652 < [72,] 1951 -0.169999999 -0.3128528 -0.027147163 -0.25510341 -0.084896591 < [73,] 1952 -0.169999999 -0.3150972 -0.024902819 -0.25644046 -0.083559541 < [74,] 1953 -0.169999999 -0.3185290 -0.021471038 -0.25848491 -0.081515086 < [75,] 1954 -0.169999999 -0.3230683 -0.016931668 -0.26118921 -0.078810793 < [76,] 1955 -0.169999999 -0.3286202 -0.011379769 -0.26449670 -0.075503294 < [77,] 1956 -0.169999999 -0.3350825 -0.004917467 -0.26834657 -0.071653431 < [78,] 1957 -0.169999999 -0.3423529 0.002352862 -0.27267781 -0.067322192 < [79,] 1958 -0.169999999 -0.3503335 0.010333515 -0.27743222 -0.062567783 < [80,] 1959 -0.169999999 -0.3589345 0.018934501 -0.28255618 -0.057443816 < [81,] 1960 -0.169999999 -0.3680750 0.028075027 -0.28800158 -0.051998422 < [82,] 1961 -0.169999999 -0.3776839 0.037683867 -0.29372596 -0.046274035 < [83,] 1962 -0.169999999 -0.3876990 0.047699017 -0.29969241 -0.040307591 < [84,] 1963 -0.169999999 -0.3980670 0.058066957 -0.30586902 -0.034130975 < [85,] 1964 -0.169999999 -0.4087417 0.068741729 -0.31222843 -0.027771567 < [86,] 1965 -0.159285714 -0.3857122 0.067140801 -0.29417746 -0.024393969 < [87,] 1966 -0.148571428 -0.3632362 0.066093356 -0.27645622 -0.020686639 < [88,] 1967 -0.137857142 -0.3414096 0.065695360 -0.25912188 -0.016592404 < [89,] 1968 -0.127142857 -0.3203446 0.066058909 -0.24224123 -0.012044485 < [90,] 1969 -0.116428571 -0.3001699 0.067312749 -0.22589096 -0.006966182 < [91,] 1970 -0.105714285 -0.2810296 0.069601066 -0.21015697 -0.001271599 < [92,] 1971 -0.095000000 -0.2630795 0.073079509 -0.19513199 0.005131993 < [93,] 1972 -0.084285714 -0.2464789 0.077907440 -0.18091096 0.012339531 < [94,] 1973 -0.073571428 -0.2313788 0.084235942 -0.16758388 0.020441022 < [95,] 1974 -0.062857142 -0.2179067 0.092192406 -0.15522664 0.029512358 < [96,] 1975 -0.052142857 -0.2061500 0.101864313 -0.14389137 0.039605655 < [97,] 1976 -0.041428571 -0.1961435 0.113286338 -0.13359871 0.050741570 < [98,] 1977 -0.030714285 -0.1878634 0.126434838 -0.12433459 0.062906020 < [99,] 1978 -0.020000000 -0.1812316 0.141231635 -0.11605243 0.076052428 < [100,] 1979 -0.009285714 -0.1761272 0.157555775 -0.10868017 0.090108739 < [101,] 1980 0.001428572 -0.1724023 0.175259450 -0.10212975 0.104986896 < [102,] 1981 0.012142857 -0.1698981 0.194183828 -0.09630656 0.120592277 < [103,] 1982 0.022857143 -0.1684575 0.214171819 -0.09111701 0.136831296 < [104,] 1983 0.033571429 -0.1679338 0.235076625 -0.08647364 0.153616502 < [105,] 1984 0.044285714 -0.1681949 0.256766379 -0.08229790 0.170869332 < [106,] 1985 0.055000000 -0.1691258 0.279125791 -0.07852111 0.188521107 < [107,] 1986 0.065714286 -0.1706273 0.302055897 -0.07508430 0.206512868 < [108,] 1987 0.076428572 -0.1726156 0.325472731 -0.07193745 0.224794593 < [109,] 1988 0.087142857 -0.1750198 0.349305552 -0.06903842 0.243324139 < [110,] 1989 0.097857143 -0.1777807 0.373494972 -0.06635184 0.262066125 < [111,] 1990 0.108571429 -0.1808483 0.397991187 -0.06384803 0.280990883 < [112,] 1991 0.119285714 -0.1841810 0.422752400 -0.06150208 0.300073511 < [113,] 1992 0.130000000 -0.1877435 0.447743468 -0.05929307 0.319293073 --- > [1,] 1880 -0.570000000 -0.7989007 -0.3410992837 -0.71728636 -0.422713636 > [2,] 1881 -0.562857143 -0.7862639 -0.3394503795 -0.70660842 -0.419105867 > [3,] 1882 -0.555714286 -0.7736739 -0.3377546582 -0.69596060 -0.415467975 > [4,] 1883 -0.548571429 -0.7611343 -0.3360085204 -0.68534522 -0.411797641 > [5,] 1884 -0.541428571 -0.7486491 -0.3342080272 -0.67476481 -0.408092333 > [6,] 1885 -0.534285714 -0.7362226 -0.3323488643 -0.66422216 -0.404349273 > [7,] 1886 -0.527142857 -0.7238594 -0.3304263043 -0.65372029 -0.400565421 > [8,] 1887 -0.520000000 -0.7115648 -0.3284351643 -0.64326256 -0.396737440 > [9,] 1888 -0.512857143 -0.6993445 -0.3263697605 -0.63285261 -0.392861675 > [10,] 1889 -0.505714286 -0.6872047 -0.3242238599 -0.62249446 -0.388934114 > [11,] 1890 -0.498571429 -0.6751522 -0.3219906288 -0.61219250 -0.384950360 > [12,] 1891 -0.491428571 -0.6631946 -0.3196625782 -0.60195155 -0.380905594 > [13,] 1892 -0.484285714 -0.6513399 -0.3172315093 -0.59177689 -0.376794541 > [14,] 1893 -0.477142857 -0.6395973 -0.3146884583 -0.58167428 -0.372611433 > [15,] 1894 -0.470000000 -0.6279764 -0.3120236430 -0.57165002 -0.368349976 > [16,] 1895 -0.462857143 -0.6164879 -0.3092264155 -0.56171097 -0.364003318 > [17,] 1896 -0.455714286 -0.6051433 -0.3062852230 -0.55186455 -0.359564026 > [18,] 1897 -0.448571429 -0.5939553 -0.3031875831 -0.54211879 -0.355024067 > [19,] 1898 -0.441428571 -0.5829371 -0.2999200783 -0.53248233 -0.350374809 > [20,] 1899 -0.434285714 -0.5721031 -0.2964683783 -0.52296440 -0.345607030 > [21,] 1900 -0.427142857 -0.5614684 -0.2928172976 -0.51357475 -0.340710959 > [22,] 1901 -0.420000000 -0.5510491 -0.2889508980 -0.50432366 -0.335676342 > [23,] 1902 -0.412857143 -0.5408616 -0.2848526441 -0.49522175 -0.330492537 > [24,] 1903 -0.405714286 -0.5309229 -0.2805056214 -0.48627991 -0.325148662 > [25,] 1904 -0.398571429 -0.5212500 -0.2758928205 -0.47750909 -0.319633772 > [26,] 1905 -0.391428571 -0.5118597 -0.2709974894 -0.46892006 -0.313937087 > [27,] 1906 -0.384285714 -0.5027679 -0.2658035488 -0.46052317 -0.308048262 > [28,] 1907 -0.377142857 -0.4939897 -0.2602960562 -0.45232803 -0.301957682 > [29,] 1908 -0.370000000 -0.4855383 -0.2544616963 -0.44434322 -0.295656778 > [30,] 1909 -0.362857143 -0.4774250 -0.2482892691 -0.43657594 -0.289138345 > [31,] 1910 -0.355714286 -0.4696584 -0.2417701364 -0.42903175 -0.282396824 > [32,] 1911 -0.348571429 -0.4622443 -0.2348985912 -0.42171431 -0.275428543 > [33,] 1912 -0.341428571 -0.4551850 -0.2276721117 -0.41462526 -0.268231879 > [34,] 1913 -0.334285714 -0.4484800 -0.2200914777 -0.40776409 -0.260807334 > [35,] 1914 -0.327142857 -0.4421250 -0.2121607344 -0.40112820 -0.253157511 > [36,] 1915 -0.320000000 -0.4361130 -0.2038870084 -0.39471301 -0.245286995 > [37,] 1916 -0.312857143 -0.4304341 -0.1952801960 -0.38851213 -0.237202155 > [38,] 1917 -0.305714286 -0.4250760 -0.1863525523 -0.38251770 -0.228910875 > [39,] 1918 -0.298571429 -0.4200246 -0.1771182205 -0.37672060 -0.220422257 > [40,] 1919 -0.291428571 -0.4152644 -0.1675927388 -0.37111085 -0.211746298 > [41,] 1920 -0.284285714 -0.4107789 -0.1577925583 -0.36567785 -0.202893584 > [42,] 1921 -0.277142857 -0.4065511 -0.1477346004 -0.36041071 -0.193875002 > [43,] 1922 -0.270000000 -0.4025641 -0.1374358695 -0.35529850 -0.184701495 > [44,] 1923 -0.262857143 -0.3988012 -0.1269131329 -0.35033043 -0.175383852 > [45,] 1924 -0.255714286 -0.3952459 -0.1161826679 -0.34549603 -0.165932545 > [46,] 1925 -0.248571429 -0.3918828 -0.1052600744 -0.34078524 -0.156357614 > [47,] 1926 -0.241428571 -0.3886970 -0.0941601449 -0.33618857 -0.146668575 > [48,] 1927 -0.234285714 -0.3856746 -0.0828967845 -0.33169705 -0.136874376 > [49,] 1928 -0.227142857 -0.3828027 -0.0714829715 -0.32730235 -0.126983369 > [50,] 1929 -0.220000000 -0.3800693 -0.0599307484 -0.32299670 -0.117003301 > [51,] 1930 -0.212857143 -0.3774630 -0.0482512378 -0.31877296 -0.106941331 > [52,] 1931 -0.205714286 -0.3749739 -0.0364546744 -0.31462453 -0.096804042 > [53,] 1932 -0.198571429 -0.3725924 -0.0245504487 -0.31054538 -0.086597478 > [54,] 1933 -0.191428571 -0.3703100 -0.0125471577 -0.30652997 -0.076327171 > [55,] 1934 -0.184285714 -0.3681188 -0.0004526588 -0.30257325 -0.065998175 > [56,] 1935 -0.177142857 -0.3660116 0.0117258745 -0.29867061 -0.055615108 > [57,] 1936 -0.170000000 -0.3639819 0.0239818977 -0.29481782 -0.045182180 > [58,] 1937 -0.170000000 -0.3552689 0.0152688616 -0.28921141 -0.050788591 > [59,] 1938 -0.170000000 -0.3469383 0.0069383006 -0.28385110 -0.056148897 > [60,] 1939 -0.170000000 -0.3390468 -0.0009532311 -0.27877329 -0.061226710 > [61,] 1940 -0.170000000 -0.3316586 -0.0083414258 -0.27401935 -0.065980650 > [62,] 1941 -0.170000000 -0.3248458 -0.0151542191 -0.26963565 -0.070364348 > [63,] 1942 -0.170000000 -0.3186875 -0.0213124962 -0.26567310 -0.074326897 > [64,] 1943 -0.170000000 -0.3132682 -0.0267318303 -0.26218603 -0.077813972 > [65,] 1944 -0.170000000 -0.3086744 -0.0313255619 -0.25923019 -0.080769813 > [66,] 1945 -0.170000000 -0.3049906 -0.0350093787 -0.25685983 -0.083140168 > [67,] 1946 -0.170000000 -0.3022928 -0.0377072467 -0.25512389 -0.084876113 > [68,] 1947 -0.170000000 -0.3006419 -0.0393580695 -0.25406166 -0.085938337 > [69,] 1948 -0.170000000 -0.3000780 -0.0399219767 -0.25369882 -0.086301183 > [70,] 1949 -0.170000000 -0.3006151 -0.0393848898 -0.25404441 -0.085955594 > [71,] 1950 -0.170000000 -0.3022398 -0.0377602233 -0.25508980 -0.084910201 > [72,] 1951 -0.170000000 -0.3049127 -0.0350872623 -0.25680972 -0.083190282 > [73,] 1952 -0.170000000 -0.3085733 -0.0314266558 -0.25916514 -0.080834862 > [74,] 1953 -0.170000000 -0.3131458 -0.0268541535 -0.26210732 -0.077892681 > [75,] 1954 -0.170000000 -0.3185461 -0.0214539408 -0.26558209 -0.074417909 > [76,] 1955 -0.170000000 -0.3246873 -0.0153126807 -0.26953369 -0.070466310 > [77,] 1956 -0.170000000 -0.3314851 -0.0085148970 -0.27390773 -0.066092271 > [78,] 1957 -0.170000000 -0.3388601 -0.0011398598 -0.27865320 -0.061346797 > [79,] 1958 -0.170000000 -0.3467402 0.0067401824 -0.28372362 -0.056276377 > [80,] 1959 -0.170000000 -0.3550607 0.0150607304 -0.28907749 -0.050922513 > [81,] 1960 -0.170000000 -0.3637650 0.0237650445 -0.29467829 -0.045321714 > [82,] 1961 -0.170000000 -0.3728037 0.0328037172 -0.30049423 -0.039505772 > [83,] 1962 -0.170000000 -0.3821340 0.0421340134 -0.30649781 -0.033502185 > [84,] 1963 -0.170000000 -0.3917191 0.0517191202 -0.31266536 -0.027334640 > [85,] 1964 -0.170000000 -0.4015274 0.0615273928 -0.31897650 -0.021023499 > [86,] 1965 -0.159285714 -0.3788752 0.0603037544 -0.30058075 -0.017990680 > [87,] 1966 -0.148571429 -0.3567712 0.0596282943 -0.28253772 -0.014605137 > [88,] 1967 -0.137857143 -0.3353102 0.0595958975 -0.26490847 -0.010805813 > [89,] 1968 -0.127142857 -0.3146029 0.0603171930 -0.24776419 -0.006521525 > [90,] 1969 -0.116428571 -0.2947761 0.0619189162 -0.23118642 -0.001670726 > [91,] 1970 -0.105714286 -0.2759711 0.0645424939 -0.21526616 0.003837587 > [92,] 1971 -0.095000000 -0.2583398 0.0683398431 -0.20010116 0.010101164 > [93,] 1972 -0.084285714 -0.2420369 0.0734654391 -0.18579083 0.017219402 > [94,] 1973 -0.073571429 -0.2272072 0.0800643002 -0.17242847 0.025285614 > [95,] 1974 -0.062857143 -0.2139711 0.0882568427 -0.16009157 0.034377282 > [96,] 1975 -0.052142857 -0.2024090 0.0981233226 -0.14883176 0.044546046 > [97,] 1976 -0.041428571 -0.1925491 0.1096919157 -0.13866718 0.055810037 > [98,] 1977 -0.030714286 -0.1843628 0.1229342326 -0.12957956 0.068150987 > [99,] 1978 -0.020000000 -0.1777698 0.1377698370 -0.12151714 0.081517138 > [100,] 1979 -0.009285714 -0.1726496 0.1540781875 -0.11440236 0.095830930 > [101,] 1980 0.001428571 -0.1688571 0.1717142023 -0.10814187 0.110999008 > [102,] 1981 0.012142857 -0.1662377 0.1905233955 -0.10263625 0.126921969 > [103,] 1982 0.022857143 -0.1646396 0.2103538775 -0.09778779 0.143502079 > [104,] 1983 0.033571429 -0.1639214 0.2310642722 -0.09350551 0.160648370 > [105,] 1984 0.044285714 -0.1639565 0.2525279044 -0.08970790 0.178279332 > [106,] 1985 0.055000000 -0.1646342 0.2746342071 -0.08632382 0.196323821 > [107,] 1986 0.065714286 -0.1658598 0.2972883534 -0.08329225 0.214720820 > [108,] 1987 0.076428571 -0.1675528 0.3204099260 -0.08056144 0.233418585 > [109,] 1988 0.087142857 -0.1696455 0.3439311798 -0.07808781 0.252373526 > [110,] 1989 0.097857143 -0.1720809 0.3677952332 -0.07583476 0.271549041 > [111,] 1990 0.108571429 -0.1748115 0.3919543697 -0.07377157 0.290914428 > [112,] 1991 0.119285714 -0.1777971 0.4163685288 -0.07187248 0.310443909 > [113,] 1992 0.130000000 -0.1810040 0.4410040109 -0.07011580 0.330115800 333,445c310,422 < [1,] 1880 -0.393247953 -0.693805062 -0.092690844 -0.572302393 -0.214193513 < [2,] 1881 -0.389244486 -0.676297026 -0.102191945 -0.560253689 -0.218235282 < [3,] 1882 -0.385241019 -0.659006413 -0.111475624 -0.548334514 -0.222147524 < [4,] 1883 -0.381237552 -0.641966465 -0.120508639 -0.536564669 -0.225910434 < [5,] 1884 -0.377234084 -0.625216717 -0.129251452 -0.524967709 -0.229500459 < [6,] 1885 -0.373230617 -0.608804280 -0.137656955 -0.513571700 -0.232889535 < [7,] 1886 -0.369227150 -0.592785330 -0.145668970 -0.502410107 -0.236044193 < [8,] 1887 -0.365223683 -0.577226782 -0.153220584 -0.491522795 -0.238924571 < [9,] 1888 -0.361220216 -0.562208058 -0.160232373 -0.480957079 -0.241483352 < [10,] 1889 -0.357216749 -0.547822773 -0.166610724 -0.470768729 -0.243664768 < [11,] 1890 -0.353213282 -0.534179978 -0.172246585 -0.461022711 -0.245403852 < [12,] 1891 -0.349209814 -0.521404410 -0.177015219 -0.451793336 -0.246626293 < [13,] 1892 -0.345206347 -0.509634924 -0.180777771 -0.443163327 -0.247249368 < [14,] 1893 -0.341202880 -0.499020116 -0.183385645 -0.435221208 -0.247184553 < [15,] 1894 -0.337199413 -0.489710224 -0.184688602 -0.428056482 -0.246342344 < [16,] 1895 -0.333195946 -0.481845064 -0.184546828 -0.421752442 -0.244639450 < [17,] 1896 -0.329192479 -0.475539046 -0.182845912 -0.416377249 -0.242007708 < [18,] 1897 -0.325189012 -0.470866120 -0.179511904 -0.411974957 -0.238403066 < [19,] 1898 -0.321185545 -0.467848651 -0.174522438 -0.408558891 -0.233812198 < [20,] 1899 -0.317182077 -0.466453839 -0.167910316 -0.406109508 -0.228254646 < [21,] 1900 -0.313178610 -0.466598933 -0.159758288 -0.404577513 -0.221779708 < [22,] 1901 -0.309175143 -0.468163434 -0.150186852 -0.403891117 -0.214459169 < [23,] 1902 -0.305171676 -0.471004432 -0.139338920 -0.403965184 -0.206378168 < [24,] 1903 -0.301168209 -0.474971184 -0.127365234 -0.404709910 -0.197626508 < [25,] 1904 -0.297164742 -0.479916458 -0.114413025 -0.406037582 -0.188291901 < [26,] 1905 -0.293161275 -0.485703869 -0.100618680 -0.407866950 -0.178455599 < [27,] 1906 -0.289157807 -0.492211633 -0.086103982 -0.410125463 -0.168190151 < [28,] 1907 -0.285154340 -0.499333719 -0.070974961 -0.412749954 -0.157558727 < [29,] 1908 -0.281150873 -0.506979351 -0.055322395 -0.415686342 -0.146615404 < [30,] 1909 -0.268996808 -0.484727899 -0.053265717 -0.397516841 -0.140476775 < [31,] 1910 -0.256842743 -0.462766683 -0.050918803 -0.379520246 -0.134165240 < [32,] 1911 -0.244688678 -0.441139176 -0.048238181 -0.361722455 -0.127654901 < [33,] 1912 -0.232534613 -0.419896002 -0.045173225 -0.344153628 -0.120915598 < [34,] 1913 -0.220380548 -0.399095811 -0.041665286 -0.326848704 -0.113912392 < [35,] 1914 -0.208226483 -0.378805976 -0.037646990 -0.309847821 -0.106605145 < [36,] 1915 -0.196072418 -0.359102922 -0.033041915 -0.293196507 -0.098948329 < [37,] 1916 -0.183918353 -0.340071771 -0.027764935 -0.276945475 -0.090891232 < [38,] 1917 -0.171764288 -0.321804943 -0.021723634 -0.261149781 -0.082378795 < [39,] 1918 -0.159610223 -0.304399275 -0.014821172 -0.245867116 -0.073353330 < [40,] 1919 -0.147456158 -0.287951368 -0.006960949 -0.231155030 -0.063757286 < [41,] 1920 -0.135302093 -0.272551143 0.001946957 -0.217067092 -0.053537094 < [42,] 1921 -0.123148028 -0.258274127 0.011978071 -0.203648297 -0.042647760 < [43,] 1922 -0.110993963 -0.245173645 0.023185718 -0.190930411 -0.031057516 < [44,] 1923 -0.098839898 -0.233274545 0.035594749 -0.178928240 -0.018751557 < [45,] 1924 -0.086685833 -0.222570067 0.049198400 -0.167637754 -0.005733912 < [46,] 1925 -0.074531768 -0.213022703 0.063959166 -0.157036610 0.007973073 < [47,] 1926 -0.062377703 -0.204568828 0.079813422 -0.147086903 0.022331496 < [48,] 1927 -0.050223638 -0.197125838 0.096678562 -0.137739423 0.037292146 < [49,] 1928 -0.038069573 -0.190600095 0.114460948 -0.128938384 0.052799237 < [50,] 1929 -0.025915508 -0.184894207 0.133063191 -0.120625768 0.068794751 < [51,] 1930 -0.013761444 -0.179912750 0.152389863 -0.112744726 0.085221839 < [52,] 1931 -0.001607379 -0.175566138 0.172351381 -0.105241887 0.102027130 < [53,] 1932 0.010546686 -0.171772831 0.192866204 -0.098068675 0.119162048 < [54,] 1933 0.022700751 -0.168460244 0.213861747 -0.091181848 0.136583351 < [55,] 1934 0.034854816 -0.165564766 0.235274399 -0.084543511 0.154253144 < [56,] 1935 0.047008881 -0.163031246 0.257049009 -0.078120807 0.172138570 < [57,] 1936 0.059162946 -0.160812199 0.279138092 -0.071885448 0.190211340 < [58,] 1937 0.054383856 -0.155656272 0.264423984 -0.070745832 0.179513544 < [59,] 1938 0.049604765 -0.150814817 0.250024348 -0.069793562 0.169003093 < [60,] 1939 0.044825675 -0.146335320 0.235986670 -0.069056925 0.158708275 < [61,] 1940 0.040046585 -0.142272933 0.222366102 -0.068568777 0.148661946 < [62,] 1941 0.035267494 -0.138691265 0.209226254 -0.068367014 0.138902002 < [63,] 1942 0.030488404 -0.135662903 0.196639710 -0.068494879 0.129471686 < [64,] 1943 0.025709313 -0.133269386 0.184688012 -0.069000947 0.120419573 < [65,] 1944 0.020930223 -0.131600299 0.173460744 -0.069938588 0.111799033 < [66,] 1945 0.016151132 -0.130751068 0.163053332 -0.071364652 0.103666917 < [67,] 1946 0.011372042 -0.130819083 0.153563167 -0.073337158 0.096081242 < [68,] 1947 0.006592951 -0.131897983 0.145083886 -0.075911890 0.089097793 < [69,] 1948 0.001813861 -0.134070373 0.137698095 -0.079138060 0.082765782 < [70,] 1949 -0.002965230 -0.137399877 0.131469418 -0.083053571 0.077123112 < [71,] 1950 -0.007744320 -0.141924001 0.126435361 -0.087680768 0.072192128 < [72,] 1951 -0.012523410 -0.147649510 0.122602689 -0.093023679 0.067976858 < [73,] 1952 -0.017302501 -0.154551551 0.119946549 -0.099067500 0.064462498 < [74,] 1953 -0.022081591 -0.162576801 0.118413618 -0.105780463 0.061617281 < [75,] 1954 -0.026860682 -0.171649733 0.117928369 -0.113117575 0.059396211 < [76,] 1955 -0.031639772 -0.181680427 0.118400882 -0.121025265 0.057745721 < [77,] 1956 -0.036418863 -0.192572281 0.119734555 -0.129445984 0.056608259 < [78,] 1957 -0.041197953 -0.204228457 0.121832550 -0.138322042 0.055926136 < [79,] 1958 -0.045977044 -0.216556537 0.124602449 -0.147598382 0.055644294 < [80,] 1959 -0.050756134 -0.229471397 0.127959128 -0.157224290 0.055712022 < [81,] 1960 -0.055535225 -0.242896613 0.131826164 -0.167154239 0.056083790 < [82,] 1961 -0.060314315 -0.256764812 0.136136182 -0.177348092 0.056719462 < [83,] 1962 -0.065093405 -0.271017346 0.140830535 -0.187770909 0.057584098 < [84,] 1963 -0.069872496 -0.285603587 0.145858595 -0.198392529 0.058647537 < [85,] 1964 -0.074651586 -0.300480064 0.151176891 -0.209187055 0.059883882 < [86,] 1965 -0.060832745 -0.275012124 0.153346634 -0.188428358 0.066762869 < [87,] 1966 -0.047013903 -0.250067729 0.156039922 -0.167981559 0.073953753 < [88,] 1967 -0.033195062 -0.225737656 0.159347533 -0.147900737 0.081510614 < [89,] 1968 -0.019376220 -0.202127937 0.163375497 -0.128249061 0.089496621 < [90,] 1969 -0.005557378 -0.179360353 0.168245596 -0.109099079 0.097984322 < [91,] 1970 0.008261463 -0.157571293 0.174094219 -0.090532045 0.107054971 < [92,] 1971 0.022080305 -0.136907986 0.181068596 -0.072635669 0.116796279 < [93,] 1972 0.035899146 -0.117521176 0.189319469 -0.055499756 0.127298049 < [94,] 1973 0.049717988 -0.099553773 0.198989749 -0.039209443 0.138645419 < [95,] 1974 0.063536830 -0.083126277 0.210199936 -0.023836517 0.150910176 < [96,] 1975 0.077355671 -0.068321437 0.223032779 -0.009430275 0.164141617 < [97,] 1976 0.091174513 -0.055172054 0.237521080 0.003989742 0.178359283 < [98,] 1977 0.104993354 -0.043655763 0.253642472 0.016436858 0.193549851 < [99,] 1978 0.118812196 -0.033698615 0.271323007 0.027955127 0.209669265 < [100,] 1979 0.132631038 -0.025186198 0.290448273 0.038612710 0.226649365 < [101,] 1980 0.146449879 -0.017978697 0.310878456 0.048492899 0.244406859 < [102,] 1981 0.160268721 -0.011925874 0.332463316 0.057685199 0.262852243 < [103,] 1982 0.174087562 -0.006879134 0.355054259 0.066278133 0.281896992 < [104,] 1983 0.187906404 -0.002699621 0.378512429 0.074354424 0.301458384 < [105,] 1984 0.201725246 0.000737403 0.402713088 0.081988382 0.321462109 < [106,] 1985 0.215544087 0.003540988 0.427547186 0.089244975 0.341843199 < [107,] 1986 0.229362929 0.005804749 0.452921108 0.096179971 0.362545886 < [108,] 1987 0.243181770 0.007608108 0.478755433 0.102840688 0.383522853 < [109,] 1988 0.257000612 0.009017980 0.504983244 0.109266987 0.404734237 < [110,] 1989 0.270819454 0.010090540 0.531548367 0.115492336 0.426146571 < [111,] 1990 0.284638295 0.010872901 0.558403689 0.121544800 0.447731790 < [112,] 1991 0.298457137 0.011404596 0.585509677 0.127447933 0.469466340 < [113,] 1992 0.312275978 0.011718869 0.612833087 0.133221539 0.491330418 --- > [1,] 1880 -0.257692308 -3.867500e-01 -0.128634653 -0.340734568 -0.174650048 > [2,] 1881 -0.250769231 -3.767293e-01 -0.124809149 -0.331818355 -0.169720107 > [3,] 1882 -0.243846154 -3.667351e-01 -0.120957249 -0.322919126 -0.164773181 > [4,] 1883 -0.236923077 -3.567692e-01 -0.117076923 -0.314038189 -0.159807965 > [5,] 1884 -0.230000000 -3.468340e-01 -0.113165951 -0.305176970 -0.154823030 > [6,] 1885 -0.223076923 -3.369319e-01 -0.109221900 -0.296337036 -0.149816810 > [7,] 1886 -0.216153846 -3.270656e-01 -0.105242105 -0.287520102 -0.144787590 > [8,] 1887 -0.209230769 -3.172379e-01 -0.101223643 -0.278728048 -0.139733491 > [9,] 1888 -0.202307692 -3.074521e-01 -0.097163311 -0.269962936 -0.134652449 > [10,] 1889 -0.195384615 -2.977116e-01 -0.093057593 -0.261227027 -0.129542204 > [11,] 1890 -0.188461539 -2.880204e-01 -0.088902637 -0.252522800 -0.124400277 > [12,] 1891 -0.181538462 -2.783827e-01 -0.084694220 -0.243852973 -0.119223950 > [13,] 1892 -0.174615385 -2.688030e-01 -0.080427720 -0.235220519 -0.114010250 > [14,] 1893 -0.167692308 -2.592865e-01 -0.076098083 -0.226628691 -0.108755924 > [15,] 1894 -0.160769231 -2.498387e-01 -0.071699793 -0.218081038 -0.103457424 > [16,] 1895 -0.153846154 -2.404655e-01 -0.067226847 -0.209581422 -0.098110886 > [17,] 1896 -0.146923077 -2.311734e-01 -0.062672732 -0.201134035 -0.092712119 > [18,] 1897 -0.140000000 -2.219696e-01 -0.058030409 -0.192743405 -0.087256595 > [19,] 1898 -0.133076923 -2.128615e-01 -0.053292314 -0.184414399 -0.081739447 > [20,] 1899 -0.126153846 -2.038573e-01 -0.048450366 -0.176152218 -0.076155475 > [21,] 1900 -0.119230769 -1.949655e-01 -0.043496005 -0.167962369 -0.070499170 > [22,] 1901 -0.112307692 -1.861951e-01 -0.038420244 -0.159850635 -0.064764750 > [23,] 1902 -0.105384615 -1.775555e-01 -0.033213760 -0.151823015 -0.058946216 > [24,] 1903 -0.098461539 -1.690561e-01 -0.027867017 -0.143885645 -0.053037432 > [25,] 1904 -0.091538462 -1.607065e-01 -0.022370423 -0.136044696 -0.047032227 > [26,] 1905 -0.084615385 -1.525162e-01 -0.016714535 -0.128306245 -0.040924524 > [27,] 1906 -0.077692308 -1.444943e-01 -0.010890287 -0.120676126 -0.034708490 > [28,] 1907 -0.070769231 -1.366492e-01 -0.004889253 -0.113159760 -0.028378702 > [29,] 1908 -0.063846154 -1.289884e-01 0.001296074 -0.105761977 -0.021930331 > [30,] 1909 -0.056923077 -1.215182e-01 0.007672008 -0.098486840 -0.015359314 > [31,] 1910 -0.050000000 -1.142434e-01 0.014243419 -0.091337484 -0.008662516 > [32,] 1911 -0.043076923 -1.071674e-01 0.021013527 -0.084315978 -0.001837868 > [33,] 1912 -0.036153846 -1.002914e-01 0.027983751 -0.077423239 0.005115546 > [34,] 1913 -0.029230769 -9.361519e-02 0.035153653 -0.070658982 0.012197443 > [35,] 1914 -0.022307692 -8.713634e-02 0.042520952 -0.064021740 0.019406355 > [36,] 1915 -0.015384615 -8.085086e-02 0.050081630 -0.057508928 0.026739697 > [37,] 1916 -0.008461538 -7.475318e-02 0.057830107 -0.051116955 0.034193878 > [38,] 1917 -0.001538462 -6.883640e-02 0.065759473 -0.044841376 0.041764453 > [39,] 1918 0.005384615 -6.309252e-02 0.073861755 -0.038677059 0.049446290 > [40,] 1919 0.012307692 -5.751281e-02 0.082128191 -0.032618368 0.057233753 > [41,] 1920 0.019230769 -5.208797e-02 0.090549507 -0.026659334 0.065120873 > [42,] 1921 0.026153846 -4.680847e-02 0.099116161 -0.020793819 0.073101511 > [43,] 1922 0.033076923 -4.166472e-02 0.107818567 -0.015015652 0.081169499 > [44,] 1923 0.040000000 -3.664727e-02 0.116647271 -0.009318753 0.089318753 > [45,] 1924 0.046923077 -3.174694e-02 0.125593095 -0.003697214 0.097543368 > [46,] 1925 0.053846154 -2.695494e-02 0.134647244 0.001854623 0.105837685 > [47,] 1926 0.060769231 -2.226292e-02 0.143801377 0.007342124 0.114196337 > [48,] 1927 0.067692308 -1.766304e-02 0.153047656 0.012770335 0.122614280 > [49,] 1928 0.074615385 -1.314799e-02 0.162378762 0.018143964 0.131086806 > [50,] 1929 0.081538462 -8.710982e-03 0.171787905 0.023467379 0.139609544 > [51,] 1930 0.088461538 -4.345738e-03 0.181268815 0.028744616 0.148178461 > [52,] 1931 0.095384615 -4.649065e-05 0.190815721 0.033979388 0.156789843 > [53,] 1932 0.102307692 4.192055e-03 0.200423329 0.039175101 0.165440284 > [54,] 1933 0.109230769 8.374747e-03 0.210086792 0.044334874 0.174126664 > [55,] 1934 0.116153846 1.250601e-02 0.219801679 0.049461559 0.182846134 > [56,] 1935 0.123076923 1.658990e-02 0.229563945 0.054557757 0.191596090 > [57,] 1936 0.130000000 2.063010e-02 0.239369902 0.059625842 0.200374158 > [58,] 1937 0.130000000 2.554264e-02 0.234457361 0.062786820 0.197213180 > [59,] 1938 0.130000000 3.023953e-02 0.229760466 0.065809042 0.194190958 > [60,] 1939 0.130000000 3.468890e-02 0.225311102 0.068671989 0.191328011 > [61,] 1940 0.130000000 3.885447e-02 0.221145527 0.071352331 0.188647669 > [62,] 1941 0.130000000 4.269563e-02 0.217304372 0.073823926 0.186176074 > [63,] 1942 0.130000000 4.616776e-02 0.213832244 0.076058070 0.183941930 > [64,] 1943 0.130000000 4.922326e-02 0.210776742 0.078024136 0.181975864 > [65,] 1944 0.130000000 5.181327e-02 0.208186727 0.079690683 0.180309317 > [66,] 1945 0.130000000 5.389026e-02 0.206109736 0.081027125 0.178972875 > [67,] 1946 0.130000000 5.541136e-02 0.204588637 0.082005877 0.177994123 > [68,] 1947 0.130000000 5.634212e-02 0.203657879 0.082604774 0.177395226 > [69,] 1948 0.130000000 5.666006e-02 0.203339939 0.082809352 0.177190648 > [70,] 1949 0.130000000 5.635724e-02 0.203642757 0.082614504 0.177385496 > [71,] 1950 0.130000000 5.544123e-02 0.204558768 0.082025096 0.177974904 > [72,] 1951 0.130000000 5.393418e-02 0.206065824 0.081055380 0.178944620 > [73,] 1952 0.130000000 5.187027e-02 0.208129729 0.079727358 0.180272642 > [74,] 1953 0.130000000 4.929223e-02 0.210707774 0.078068513 0.181931487 > [75,] 1954 0.130000000 4.624751e-02 0.213752495 0.076109385 0.183890615 > [76,] 1955 0.130000000 4.278497e-02 0.217215029 0.073881414 0.186118586 > [77,] 1956 0.130000000 3.895228e-02 0.221047722 0.071415265 0.188584735 > [78,] 1957 0.130000000 3.479412e-02 0.225205878 0.068739695 0.191260305 > [79,] 1958 0.130000000 3.035124e-02 0.229648764 0.065880916 0.194119084 > [80,] 1959 0.130000000 2.565999e-02 0.234340014 0.062862328 0.197137672 > [81,] 1960 0.130000000 2.075236e-02 0.239247637 0.059704514 0.200295486 > [82,] 1961 0.130000000 1.565622e-02 0.244343776 0.056425398 0.203574602 > [83,] 1962 0.130000000 1.039566e-02 0.249604337 0.053040486 0.206959514 > [84,] 1963 0.130000000 4.991436e-03 0.255008564 0.049563131 0.210436869 > [85,] 1964 0.130000000 -5.386147e-04 0.260538615 0.046004815 0.213995185 > [86,] 1965 0.143076923 1.926909e-02 0.266884757 0.063412665 0.222741181 > [87,] 1966 0.156153846 3.876772e-02 0.273539971 0.080621643 0.231686050 > [88,] 1967 0.169230769 5.790379e-02 0.280557753 0.097597325 0.240864213 > [89,] 1968 0.182307692 7.661491e-02 0.288000479 0.114299577 0.250315807 > [90,] 1969 0.195384615 9.482963e-02 0.295939602 0.130682422 0.260086809 > [91,] 1970 0.208461538 1.124682e-01 0.304454863 0.146694551 0.270228526 > [92,] 1971 0.221538461 1.294450e-01 0.313631914 0.162280850 0.280796073 > [93,] 1972 0.234615385 1.456729e-01 0.323557850 0.177385278 0.291845491 > [94,] 1973 0.247692308 1.610702e-01 0.334314435 0.191955225 0.303429390 > [95,] 1974 0.260769231 1.755689e-01 0.345969561 0.205947004 0.315591457 > [96,] 1975 0.273846154 1.891238e-01 0.358568478 0.219331501 0.328360807 > [97,] 1976 0.286923077 2.017191e-01 0.372127073 0.232098492 0.341747662 > [98,] 1977 0.300000000 2.133707e-01 0.386629338 0.244258277 0.355741722 > [99,] 1978 0.313076923 2.241239e-01 0.402029922 0.255840039 0.370313807 > [100,] 1979 0.326153846 2.340468e-01 0.418260863 0.266887506 0.385420186 > [101,] 1980 0.339230769 2.432212e-01 0.435240360 0.277453314 0.401008224 > [102,] 1981 0.352307692 2.517341e-01 0.452881314 0.287593508 0.417021876 > [103,] 1982 0.365384615 2.596711e-01 0.471098085 0.297363192 0.433406039 > [104,] 1983 0.378461538 2.671121e-01 0.489810964 0.306813654 0.450109423 > [105,] 1984 0.391538461 2.741284e-01 0.508948530 0.315990851 0.467086072 > [106,] 1985 0.404615384 2.807823e-01 0.528448443 0.324934896 0.484295873 > [107,] 1986 0.417692308 2.871274e-01 0.548257238 0.333680190 0.501704425 > [108,] 1987 0.430769231 2.932089e-01 0.568329576 0.342255907 0.519282554 > [109,] 1988 0.443846154 2.990650e-01 0.588627259 0.350686626 0.537005682 > [110,] 1989 0.456923077 3.047279e-01 0.609118218 0.358992981 0.554853173 > [111,] 1990 0.470000000 3.102244e-01 0.629775550 0.367192284 0.572807716 > [112,] 1991 0.483076923 3.155772e-01 0.650576667 0.375299067 0.590854778 > [113,] 1992 0.496153846 3.208051e-01 0.671502569 0.383325558 0.608982134 468,470d444 < Warning message: < In cobs(year, temp, knots.add = TRUE, degree = 1, constraint = "none", : < drqssbc2(): Not all flags are normal (== 1), ifl : 19 480,482d453 < Warning message: < In cobs(year, temp, nknots = 9, knots.add = TRUE, degree = 1, constraint = "none", : < drqssbc2(): Not all flags are normal (== 1), ifl : 22 486,489d456 < < **** ERROR in algorithm: ifl = 22 < < 492,493c459,460 < coef[1:5]: -0.39324840, -0.28115087, 0.05916295, -0.07465159, 0.31227753 < R^2 = 73.22% ; empirical tau (over all): 63/113 = 0.5575221 (target tau= 0.5) --- > coef[1:5]: -0.40655906, -0.31473700, 0.05651823, -0.05681818, 0.28681956 > R^2 = 72.56% ; empirical tau (over all): 54/113 = 0.4778761 (target tau= 0.5) 499,502d465 < < **** ERROR in algorithm: ifl = 22 < < 505,507d467 < Warning message: < In cobs(year, temp, nknots = length(a50$knots), knots = a50$knot, : < drqssbc2(): Not all flags are normal (== 1), ifl : 22 512,515d471 < < **** ERROR in algorithm: ifl = 22 < < 518,520d473 < Warning message: < In cobs(year, temp, nknots = length(a50$knots), knots = a50$knot, : < drqssbc2(): Not all flags are normal (== 1), ifl : 22 522,524c475 < [1] 1 2 9 10 17 18 20 21 22 23 26 27 35 36 42 47 48 49 52 < [20] 53 58 59 61 62 63 64 65 68 73 74 78 79 80 81 82 83 84 88 < [39] 90 91 94 98 100 101 102 104 108 109 111 112 --- > [1] 10 18 21 22 47 61 68 74 78 79 102 111 526,529c477 < [1] 3 4 5 6 7 8 11 12 13 14 15 16 19 24 25 28 29 30 31 < [20] 32 33 34 37 38 39 40 41 43 44 45 46 50 51 54 55 56 57 60 < [39] 66 67 69 70 71 72 75 76 77 85 86 87 89 92 93 95 96 97 99 < [58] 103 105 106 107 110 113 --- > [1] 5 8 25 38 39 50 54 77 85 97 113 Running ‘wind.R’ [10s/12s] Running the tests in ‘tests/ex1.R’ failed. Complete output: > #### OOps! Running this in 'CMD check' or in *R* __for the first time__ > #### ===== gives a wrong result (at the end) than when run a 2nd time > ####-- problem disappears with introduction of if (psw) call ... in Fortran > > suppressMessages(library(cobs)) > options(digits = 6) > if(!dev.interactive(orNone=TRUE)) pdf("ex1.pdf") > > source(system.file("util.R", package = "cobs")) > > ## Simple example from example(cobs) > set.seed(908) > x <- seq(-1,1, len = 50) > f.true <- pnorm(2*x) > y <- f.true + rnorm(50)/10 > ## specify constraints (boundary conditions) > con <- rbind(c( 1,min(x),0), + c(-1,max(x),1), + c( 0, 0, 0.5)) > ## obtain the median *regression* B-spline using automatically selected knots > coR <- cobs(x,y,constraint = "increase", pointwise = con) qbsks2(): Performing general knot selection ... Deleting unnecessary knots ... > summaryCobs(coR) List of 24 $ call : language cobs(x = x, y = y, constraint = "increase", pointwise = con) $ tau : num 0.5 $ degree : num 2 $ constraint : chr "increase" $ ic : chr "AIC" $ pointwise : num [1:3, 1:3] 1 -1 0 -1 1 0 0 1 0.5 $ select.knots : logi TRUE $ select.lambda: logi FALSE $ x : num [1:50] -1 -0.959 -0.918 -0.878 -0.837 ... $ y : num [1:50] 0.2254 0.0916 0.0803 -0.0272 -0.0454 ... $ resid : num [1:50] 0.1976 0.063 0.0491 -0.0626 -0.0868 ... $ fitted : num [1:50] 0.0278 0.0287 0.0312 0.0354 0.0414 ... $ coef : num [1:4] 0.0278 0.0278 0.8154 1 $ knots : num [1:3] -1 -0.224 1 $ k0 : num 4 $ k : num 4 $ x.ps :Formal class 'matrix.csr' [package "SparseM"] with 4 slots $ SSy : num 6.19 $ lambda : num 0 $ icyc : int 7 $ ifl : int 1 $ pp.lambda : NULL $ pp.sic : NULL $ i.mask : NULL cb.lo ci.lo fit ci.up cb.up 1 -6.77514e-02 -0.029701622 0.0278152 0.0853320 0.123382 2 -6.41787e-02 -0.027468888 0.0280224 0.0835138 0.120224 3 -6.04433e-02 -0.024973163 0.0286442 0.0822615 0.117732 4 -5.65412e-02 -0.022212175 0.0296803 0.0815728 0.115902 5 -5.24674e-02 -0.019182756 0.0311310 0.0814447 0.114729 6 -4.82149e-02 -0.015880775 0.0329961 0.0818729 0.114207 7 -4.37751e-02 -0.012301110 0.0352757 0.0828524 0.114326 8 -3.91381e-02 -0.008437641 0.0379697 0.0843771 0.115077 9 -3.42918e-02 -0.004283290 0.0410782 0.0864397 0.116448 10 -2.92233e-02 0.000169901 0.0446012 0.0890325 0.118426 11 -2.39179e-02 0.004930665 0.0485387 0.0921467 0.120995 12 -1.83600e-02 0.010008360 0.0528906 0.0957728 0.124141 13 -1.25335e-02 0.015412811 0.0576570 0.0999012 0.127847 14 -6.42140e-03 0.021154129 0.0628378 0.1045216 0.132097 15 -6.81378e-06 0.027242531 0.0684332 0.1096238 0.136873 16 6.72715e-03 0.033688168 0.0744430 0.1151978 0.142159 17 1.37970e-02 0.040500961 0.0808672 0.1212335 0.147938 18 2.12185e-02 0.047690461 0.0877060 0.1277215 0.154193 19 2.90068e-02 0.055265726 0.0949592 0.1346527 0.160912 20 3.71760e-02 0.063235225 0.1026269 0.1420185 0.168078 21 4.57390e-02 0.071606758 0.1107090 0.1498113 0.175679 22 5.47075e-02 0.080387396 0.1192056 0.1580238 0.183704 23 6.40921e-02 0.089583438 0.1281167 0.1666500 0.192141 24 7.39018e-02 0.099200377 0.1374422 0.1756841 0.200983 25 8.41444e-02 0.109242876 0.1471823 0.1851216 0.210220 26 9.48262e-02 0.119714746 0.1573367 0.1949588 0.219847 27 1.05952e-01 0.130618921 0.1679057 0.2051925 0.229859 28 1.17526e-01 0.141957438 0.1788891 0.2158208 0.240253 29 1.29548e-01 0.153731401 0.1902870 0.2268426 0.251026 30 1.42021e-01 0.165940947 0.2020994 0.2382578 0.262178 31 1.54941e-01 0.178585191 0.2143262 0.2500672 0.273711 32 1.68306e-01 0.191662165 0.2269675 0.2622729 0.285629 33 1.82111e-01 0.205168744 0.2400233 0.2748778 0.297936 34 1.96348e-01 0.219100556 0.2534935 0.2878865 0.310639 35 2.11008e-01 0.233451886 0.2673782 0.3013046 0.323748 36 2.26079e-01 0.248215565 0.2816774 0.3151392 0.337276 37 2.41547e-01 0.263382876 0.2963910 0.3293992 0.351235 38 2.57393e-01 0.278943451 0.3115191 0.3440948 0.365645 39 2.73599e-01 0.294885220 0.3270617 0.3592382 0.380524 40 2.90023e-01 0.311080514 0.3429107 0.3747410 0.395798 41 3.06194e-01 0.327075735 0.3586411 0.3902065 0.411088 42 3.22074e-01 0.342831649 0.3742095 0.4055873 0.426345 43 3.37676e-01 0.358355597 0.3896158 0.4208761 0.441556 44 3.53012e-01 0.373655096 0.4048602 0.4360653 0.456709 45 3.68094e-01 0.388737688 0.4199426 0.4511475 0.471791 46 3.82936e-01 0.403610792 0.4348630 0.4661151 0.486790 47 3.97549e-01 0.418281590 0.4496214 0.4809611 0.501694 48 4.11944e-01 0.432756923 0.4642177 0.4956786 0.516491 49 4.26133e-01 0.447043216 0.4786521 0.5102611 0.531172 50 4.40124e-01 0.461146429 0.4929245 0.5247027 0.545725 51 4.53927e-01 0.475072016 0.5070350 0.5389979 0.560143 52 4.67551e-01 0.488824911 0.5209834 0.5531418 0.574416 53 4.81002e-01 0.502409521 0.5347698 0.5671300 0.588538 54 4.94287e-01 0.515829730 0.5483942 0.5809587 0.602501 55 5.07412e-01 0.529088909 0.5618566 0.5946243 0.616302 56 5.20381e-01 0.542189933 0.5751571 0.6081242 0.629933 57 5.33198e-01 0.555135196 0.5882955 0.6214558 0.643393 58 5.45867e-01 0.567926630 0.6012719 0.6346172 0.656677 59 5.58390e-01 0.580565721 0.6140864 0.6476070 0.669782 60 5.70769e-01 0.593053527 0.6267388 0.6604241 0.682708 61 5.83005e-01 0.605390690 0.6392293 0.6730679 0.695454 62 5.95098e-01 0.617577451 0.6515577 0.6855380 0.708017 63 6.07048e-01 0.629613656 0.6637242 0.6978347 0.720400 64 6.18854e-01 0.641498766 0.6757287 0.7099586 0.732603 65 6.30515e-01 0.653231865 0.6875711 0.7219104 0.744627 66 6.42028e-01 0.664811658 0.6992516 0.7336916 0.756475 67 6.53391e-01 0.676236478 0.7107701 0.7453037 0.768149 68 6.64600e-01 0.687504287 0.7221266 0.7567489 0.779653 69 6.75652e-01 0.698612675 0.7333211 0.7680295 0.790991 70 6.86541e-01 0.709558867 0.7443536 0.7791483 0.802166 71 6.97262e-01 0.720339721 0.7552241 0.7901084 0.813186 72 7.07810e-01 0.730951740 0.7659326 0.8009134 0.824055 73 7.18179e-01 0.741391078 0.7764791 0.8115671 0.834779 74 7.28361e-01 0.751653555 0.7868636 0.8220736 0.845367 75 7.38348e-01 0.761734678 0.7970861 0.8324375 0.855824 76 7.48134e-01 0.771629669 0.8071466 0.8426636 0.866160 77 7.57709e-01 0.781333498 0.8170452 0.8527568 0.876382 78 7.67065e-01 0.790840929 0.8267817 0.8627224 0.886499 79 7.76192e-01 0.800146569 0.8363562 0.8725659 0.896520 80 7.85083e-01 0.809244928 0.8457688 0.8822926 0.906455 81 7.93727e-01 0.818130488 0.8550193 0.8919081 0.916312 82 8.02116e-01 0.826797774 0.8641079 0.9014179 0.926100 83 8.10240e-01 0.835241429 0.8730344 0.9108274 0.935829 84 8.18091e-01 0.843456291 0.8817990 0.9201417 0.945507 85 8.25661e-01 0.851437463 0.8904015 0.9293656 0.955142 86 8.32942e-01 0.859180385 0.8988421 0.9385038 0.964742 87 8.39928e-01 0.866680887 0.9071207 0.9475605 0.974313 88 8.46612e-01 0.873935236 0.9152373 0.9565393 0.983862 89 8.52989e-01 0.880940170 0.9231918 0.9654435 0.993395 90 8.59054e-01 0.887692913 0.9309844 0.9742760 1.002915 91 8.64803e-01 0.894191180 0.9386150 0.9830389 1.012427 92 8.70233e-01 0.900433167 0.9460836 0.9917341 1.021934 93 8.75343e-01 0.906417527 0.9533902 1.0003629 1.031437 94 8.80130e-01 0.912143340 0.9605348 1.0089263 1.040939 95 8.84594e-01 0.917610075 0.9675174 1.0174248 1.050441 96 8.88735e-01 0.922817542 0.9743381 1.0258586 1.059942 97 8.92551e-01 0.927765853 0.9809967 1.0342275 1.069442 98 8.96045e-01 0.932455371 0.9874933 1.0425312 1.078941 99 8.99218e-01 0.936886669 0.9938279 1.0507692 1.088438 100 9.02069e-01 0.941060487 1.0000006 1.0589406 1.097932 knots : [1] -1.00000 -0.22449 1.00000 coef : [1] 0.0278152 0.0278152 0.8153868 1.0000006 > coR1 <- cobs(x,y,constraint = "increase", pointwise = con, degree = 1) qbsks2(): Performing general knot selection ... Deleting unnecessary knots ... > summary(coR1) COBS regression spline (degree = 1) from call: cobs(x = x, y = y, constraint = "increase", degree = 1, pointwise = con) {tau=0.5}-quantile; dimensionality of fit: 4 from {4} x$knots[1:4]: -1.000002, -0.632653, 0.183673, 1.000002 with 3 pointwise constraints coef[1:4]: 0.0504467, 0.0504467, 0.6305155, 1.0000009 R^2 = 93.83% ; empirical tau (over all): 21/50 = 0.42 (target tau= 0.5) > > ## compute the median *smoothing* B-spline using automatically chosen lambda > coS <- cobs(x,y,constraint = "increase", pointwise = con, + lambda = -1, trace = 3) Searching for optimal lambda. This may take a while. While you are waiting, here is something you can consider to speed up the process: (a) Use a smaller number of knots; (b) Set lambda==0 to exclude the penalty term; (c) Use a coarser grid by reducing the argument 'lambda.length' from the default value of 25. loo.design2(): -> Xeq 51 x 22 (nz = 151 =^= 0.13%) Xieq 62 x 22 (nz = 224 =^= 0.16%) ........................ The algorithm has converged. You might plot() the returned object (which plots 'sic' against 'lambda') to see if you have found the global minimum of the information criterion so that you can determine if you need to adjust any or all of 'lambda.lo', 'lambda.hi' and 'lambda.length' and refit the model. > with(coS, cbind(pp.lambda, pp.sic, k0, ifl, icyc)) pp.lambda pp.sic k0 ifl icyc [1,] 3.54019e-05 -2.64644 22 1 21 [2,] 6.92936e-05 -2.64644 22 1 21 [3,] 1.35631e-04 -2.64644 22 1 20 [4,] 2.65477e-04 -2.64644 22 1 22 [5,] 5.19629e-04 -2.64644 22 1 22 [6,] 1.01709e-03 -2.64644 22 1 23 [7,] 1.99080e-03 -2.68274 21 1 20 [8,] 3.89667e-03 -2.75212 19 1 18 [9,] 7.62711e-03 -2.73932 19 1 14 [10,] 1.49289e-02 -2.85261 16 1 13 [11,] 2.92209e-02 -2.97873 12 1 12 [12,] 5.71953e-02 -3.01058 11 1 12 [13,] 1.11951e-01 -3.04364 10 1 11 [14,] 2.19126e-01 -3.11242 8 1 12 [15,] 4.28904e-01 -3.17913 6 1 12 [16,] 8.39512e-01 -3.18824 5 1 11 [17,] 1.64321e+00 -3.01467 5 1 12 [18,] 3.21633e+00 -3.01380 4 1 11 [19,] 6.29545e+00 -3.01380 4 1 10 [20,] 1.23223e+01 -3.01380 4 1 11 [21,] 2.41190e+01 -3.01380 4 1 11 [22,] 4.72092e+01 -3.01380 4 1 10 [23,] 9.24046e+01 -3.01380 4 1 10 [24,] 1.80867e+02 -3.01380 4 1 10 [25,] 3.54019e+02 -3.01380 4 1 10 > with(coS, plot(pp.sic ~ pp.lambda, type = "b", log = "x", col=2, + main = deparse(call))) > ##-> very nice minimum close to 1 > > summaryCobs(coS) List of 24 $ call : language cobs(x = x, y = y, constraint = "increase", lambda = -1, pointwise = con, trace = 3) $ tau : num 0.5 $ degree : num 2 $ constraint : chr "increase" $ ic : NULL $ pointwise : num [1:3, 1:3] 1 -1 0 -1 1 0 0 1 0.5 $ select.knots : logi TRUE $ select.lambda: logi TRUE $ x : num [1:50] -1 -0.959 -0.918 -0.878 -0.837 ... $ y : num [1:50] 0.2254 0.0916 0.0803 -0.0272 -0.0454 ... $ resid : num [1:50] 0.2254 0.0829 0.062 -0.0562 -0.0862 ... $ fitted : num [1:50] 0 0.00869 0.01837 0.02906 0.04075 ... $ coef : num [1:22] 0 0.00819 0.03365 0.06662 0.10458 ... $ knots : num [1:20] -1 -0.918 -0.796 -0.714 -0.592 ... $ k0 : int [1:25] 22 22 22 22 22 22 21 19 19 16 ... $ k : int 5 $ x.ps :Formal class 'matrix.csr' [package "SparseM"] with 4 slots $ SSy : num 6.19 $ lambda : Named num 0.84 ..- attr(*, "names")= chr "lambda" $ icyc : int [1:25] 21 21 20 22 22 23 20 18 14 13 ... $ ifl : int [1:25] 1 1 1 1 1 1 1 1 1 1 ... $ pp.lambda : num [1:25] 0 0 0 0 0.001 0.001 0.002 0.004 0.008 0.015 ... $ pp.sic : num [1:25] -2.65 -2.65 -2.65 -2.65 -2.65 ... $ i.mask : logi [1:25] TRUE TRUE TRUE TRUE TRUE TRUE ... cb.lo ci.lo fit ci.up cb.up 1 -0.07071332 -0.03907635 -3.77249e-07 0.0390756 0.0707126 2 -0.06555125 -0.03435600 4.17438e-03 0.0427048 0.0739000 3 -0.06016465 -0.02940203 8.59400e-03 0.0465900 0.0773526 4 -0.05455349 -0.02421442 1.32585e-02 0.0507314 0.0810704 5 -0.04871809 -0.01879334 1.81678e-02 0.0551289 0.0850537 6 -0.04265897 -0.01313909 2.33220e-02 0.0597831 0.0893029 7 -0.03637554 -0.00725134 2.87210e-02 0.0646934 0.0938176 8 -0.02986704 -0.00112966 3.43649e-02 0.0698595 0.0985969 9 -0.02313305 0.00522618 4.02537e-02 0.0752812 0.1036404 10 -0.01617351 0.01181620 4.63873e-02 0.0809584 0.1089481 11 -0.00898880 0.01864020 5.27658e-02 0.0868914 0.1145204 12 -0.00157983 0.02569768 5.93891e-02 0.0930806 0.1203581 13 0.00605308 0.03298846 6.62573e-02 0.0995262 0.1264615 14 0.01391000 0.04051257 7.33704e-02 0.1062282 0.1328307 15 0.02199057 0.04826981 8.07283e-02 0.1131867 0.1394660 16 0.03029461 0.05626010 8.83310e-02 0.1204020 0.1463675 17 0.03882336 0.06448412 9.61787e-02 0.1278732 0.1535339 18 0.04757769 0.07294234 1.04271e-01 0.1355999 0.1609646 19 0.05655804 0.08163500 1.12608e-01 0.1435819 0.1686589 20 0.06576441 0.09056212 1.21191e-01 0.1518192 0.1766169 21 0.07519637 0.09972344 1.30018e-01 0.1603120 0.1848391 22 0.08485262 0.10911826 1.39090e-01 0.1690610 0.1933266 23 0.09473211 0.11874598 1.48406e-01 0.1780668 0.2020807 24 0.10483493 0.12860668 1.57968e-01 0.1873294 0.2111011 25 0.11516076 0.13870015 1.67775e-01 0.1968489 0.2203882 26 0.12570956 0.14902638 1.77826e-01 0.2066253 0.2299421 27 0.13648327 0.15958645 1.88122e-01 0.2166576 0.2397608 28 0.14748286 0.17038090 1.98663e-01 0.2269453 0.2498433 29 0.15870881 0.18140998 2.09449e-01 0.2374880 0.2601892 30 0.17016110 0.19267368 2.20480e-01 0.2482859 0.2707984 31 0.18183922 0.20417172 2.31755e-01 0.2593391 0.2816716 32 0.19374227 0.21590361 2.43276e-01 0.2706482 0.2928095 33 0.20587062 0.22786955 2.55041e-01 0.2822129 0.3042118 34 0.21822524 0.24007008 2.67051e-01 0.2940328 0.3158776 35 0.23080666 0.25250549 2.79306e-01 0.3061075 0.3278063 36 0.24361488 0.26517577 2.91806e-01 0.3184370 0.3399979 37 0.25664938 0.27808064 3.04551e-01 0.3310217 0.3524530 38 0.26990862 0.29121926 3.17541e-01 0.3438624 0.3651730 39 0.28339034 0.30459037 3.30775e-01 0.3569602 0.3781603 40 0.29709467 0.31819405 3.44255e-01 0.3703152 0.3914146 41 0.31102144 0.33203019 3.57979e-01 0.3839275 0.4049363 42 0.32517059 0.34609876 3.71948e-01 0.3977971 0.4187252 43 0.33954481 0.36040126 3.86162e-01 0.4119224 0.4327789 44 0.35414537 0.37493839 4.00621e-01 0.4263028 0.4470958 45 0.36897279 0.38971043 4.15324e-01 0.4409381 0.4616757 46 0.38402708 0.40471738 4.30273e-01 0.4558281 0.4765184 47 0.39930767 0.41995895 4.45466e-01 0.4709732 0.4916245 48 0.41479557 0.43541678 4.60887e-01 0.4863568 0.5069780 49 0.43039487 0.45099622 4.76442e-01 0.5018872 0.5224885 50 0.44609197 0.46668362 4.92117e-01 0.5175506 0.5381422 51 0.46188684 0.48247895 5.07913e-01 0.5333471 0.5539392 52 0.47773555 0.49833835 5.23786e-01 0.5492329 0.5698357 53 0.49336687 0.51398935 5.39461e-01 0.5649325 0.5855550 54 0.50873469 0.52938518 5.54891e-01 0.5803975 0.6010480 55 0.52383955 0.54452615 5.70077e-01 0.5956277 0.6163143 56 0.53868141 0.55941225 5.85018e-01 0.6106231 0.6313539 57 0.55325974 0.57404316 5.99714e-01 0.6253839 0.6461673 58 0.56757320 0.58841816 6.14165e-01 0.6399109 0.6607558 59 0.58161907 0.60253574 6.28371e-01 0.6542056 0.6751223 60 0.59539741 0.61639593 6.42332e-01 0.6682680 0.6892665 61 0.60890835 0.62999881 6.56048e-01 0.6820980 0.7031884 62 0.62215175 0.64334429 6.69520e-01 0.6956957 0.7168882 63 0.63512996 0.65643368 6.82747e-01 0.7090597 0.7303634 64 0.64784450 0.66926783 6.95729e-01 0.7221893 0.7436126 65 0.66029589 0.68184700 7.08466e-01 0.7350841 0.7566352 66 0.67248408 0.69417118 7.20958e-01 0.7477442 0.7694313 67 0.68440855 0.70624008 7.33205e-01 0.7601699 0.7820014 68 0.69606829 0.71805313 7.45207e-01 0.7723617 0.7943465 69 0.70746295 0.72961016 7.56965e-01 0.7843198 0.8064670 70 0.71859343 0.74091165 7.68478e-01 0.7960438 0.8183620 71 0.72946023 0.75195789 7.79746e-01 0.8075332 0.8300309 72 0.74006337 0.76274887 7.90769e-01 0.8187883 0.8414738 73 0.75040233 0.77328433 8.01547e-01 0.8298091 0.8526911 74 0.76047612 0.78356369 8.12080e-01 0.8405963 0.8636839 75 0.77028266 0.79358583 8.22368e-01 0.8511510 0.8744542 76 0.77982200 0.80335076 8.32412e-01 0.8614732 0.8850020 77 0.78909446 0.81285866 8.42211e-01 0.8715627 0.8953269 78 0.79809990 0.82210946 8.51765e-01 0.8814196 0.9054292 79 0.80683951 0.83110382 8.61074e-01 0.8910433 0.9153076 80 0.81531459 0.83984244 8.70138e-01 0.9004329 0.9249608 81 0.82352559 0.84832559 8.78957e-01 0.9095884 0.9343884 82 0.83147249 0.85655324 8.87531e-01 0.9185095 0.9435903 83 0.83915483 0.86452515 8.95861e-01 0.9271968 0.9525671 84 0.84657171 0.87224082 9.03946e-01 0.9356505 0.9613196 85 0.85372180 0.87969951 9.11786e-01 0.9438715 0.9698492 86 0.86060525 0.88690131 9.19381e-01 0.9518597 0.9781558 87 0.86722242 0.89384640 9.26731e-01 0.9596149 0.9862389 88 0.87357322 0.90053476 9.33836e-01 0.9671371 0.9940986 89 0.87965804 0.90696658 9.40696e-01 0.9744261 1.0017347 90 0.88547781 0.91314239 9.47312e-01 0.9814814 1.0091460 91 0.89103290 0.91906239 9.53683e-01 0.9883028 1.0163323 92 0.89632328 0.92472655 9.59808e-01 0.9948904 1.0232937 93 0.90134850 0.93013464 9.65689e-01 1.0012443 1.0300304 94 0.90610776 0.93528622 9.71326e-01 1.0073650 1.0365434 95 0.91060065 0.94018104 9.76717e-01 1.0132527 1.0428331 96 0.91482784 0.94481950 9.81863e-01 1.0189071 1.0488987 97 0.91878971 0.94920179 9.86765e-01 1.0243279 1.0547400 98 0.92248624 0.95332789 9.91422e-01 1.0295152 1.0603569 99 0.92591703 0.95719761 9.95833e-01 1.0344692 1.0657498 100 0.92908136 0.96081053 1.00000e+00 1.0391902 1.0709194 knots : [1] -1.0000020 -0.9183673 -0.7959184 -0.7142857 -0.5918367 -0.5102041 [7] -0.3877551 -0.2653061 -0.1836735 -0.0612245 0.0204082 0.1428571 [13] 0.2244898 0.3469388 0.4693878 0.5510204 0.6734694 0.7551020 [19] 0.8775510 1.0000020 coef : [1] -4.01161e-07 8.18714e-03 3.36534e-02 6.66159e-02 1.04576e-01 [6] 1.50032e-01 2.00486e-01 2.70027e-01 3.35473e-01 4.05918e-01 [11] 4.83858e-01 5.64259e-01 6.37163e-01 7.05069e-01 7.77561e-01 [16] 8.30474e-01 8.78390e-01 9.18810e-01 9.54232e-01 9.87743e-01 [21] 1.00000e+00 5.99960e-01 > > plot(x, y, main = "cobs(x,y, constraint=\"increase\", pointwise = *)") > matlines(x, cbind(fitted(coR), fitted(coR1), fitted(coS)), + col = 2:4, lty=1) > > ##-- real data example (still n = 50) > data(cars) > attach(cars) > co1 <- cobs(speed, dist, "increase") qbsks2(): Performing general knot selection ... Deleting unnecessary knots ... > co1.1 <- cobs(speed, dist, "increase", knots.add = TRUE) qbsks2(): Performing general knot selection ... Deleting unnecessary knots ... Searching for missing knots ... > co1.2 <- cobs(speed, dist, "increase", knots.add = TRUE, repeat.delete.add = TRUE) qbsks2(): Performing general knot selection ... Deleting unnecessary knots ... Searching for missing knots ... > ## These three all give the same -- only remaining knots (outermost data): > ic <- which("call" == names(co1)) > stopifnot(all.equal(co1[-ic], co1.1[-ic]), + all.equal(co1[-ic], co1.2[-ic])) > 1 - sum(co1 $ resid ^2) / sum((dist - mean(dist))^2) # R^2 = 64.2% [1] 0.642288 > > co2 <- cobs(speed, dist, "increase", lambda = -1)# 6 warnings Searching for optimal lambda. This may take a while. While you are waiting, here is something you can consider to speed up the process: (a) Use a smaller number of knots; (b) Set lambda==0 to exclude the penalty term; (c) Use a coarser grid by reducing the argument 'lambda.length' from the default value of 25. Error in x %*% coefficients : NA/NaN/Inf in foreign function call (arg 2) Calls: cobs -> drqssbc2 -> rq.fit.sfnc -> %*% -> %*% Execution halted Running the tests in ‘tests/wind.R’ failed. Complete output: > suppressMessages(library(cobs)) > > source(system.file("util.R", package = "cobs")) > (doExtra <- doExtras()) [1] FALSE > source(system.file("test-tools-1.R", package="Matrix", mustWork=TRUE)) Loading required package: tools > showProc.time() # timing here (to be faster by default) Time (user system elapsed): 0.002 0.001 0.002 > > data(DublinWind) > attach(DublinWind)##-> speed & day (instead of "wind.x" & "DUB.") > iday <- sort.list(day) > > if(!dev.interactive(orNone=TRUE)) pdf("wind.pdf", width=10) > > stopifnot(identical(day,c(rep(c(rep(1:365,3),1:366),4), + rep(1:365,2)))) > co50.1 <- cobs(day, speed, constraint= "periodic", tau= .5, lambda= 2.2, + degree = 1) > co50.2 <- cobs(day, speed, constraint= "periodic", tau= .5, lambda= 2.2, + degree = 2) > > showProc.time() Time (user system elapsed): 0.681 0.035 1.101 > > plot(day,speed, pch = ".", col = "gray20") > lines(day[iday], fitted(co50.1)[iday], col="orange", lwd = 2) > lines(day[iday], fitted(co50.2)[iday], col="sky blue", lwd = 2) > rug(knots(co50.1), col=3, lwd=2) > > nknots <- 13 > > > if(doExtra) { + ## Compute the quadratic median smoothing B-spline using SIC + ## lambda selection + co.o50 <- + cobs(day, speed, knots.add = TRUE, constraint="periodic", nknots = nknots, + tau = .5, lambda = -1, method = "uniform") + summary(co.o50) # [does print] + + showProc.time() + + op <- par(mfrow = c(3,1), mgp = c(1.5, 0.6,0), mar=.1 + c(3,3:1)) + with(co.o50, plot(pp.sic ~ pp.lambda, type ="o", + col=2, log = "x", main = "co.o50: periodic")) + with(co.o50, plot(pp.sic ~ pp.lambda, type ="o", ylim = robrng(pp.sic), + col=2, log = "x", main = "co.o50: periodic")) + of <- 0.64430538125795 + with(co.o50, plot(pp.sic - of ~ pp.lambda, type ="o", ylim = c(6e-15, 8e-15), + ylab = paste("sic -",formatC(of, dig=14, small.m = "'")), + col=2, log = "x", main = "co.o50: periodic")) + par(op) + } > > showProc.time() Time (user system elapsed): 0.049 0 0.05 > > ## cobs99: Since SIC chooses a lambda that corresponds to the smoothest > ## possible fit, rerun cobs with a larger lstart value > ## (lstart <- log(.Machine$double.xmax)^3) # 3.57 e9 > ## > co.o50. <- + cobs(day,speed, knots.add = TRUE, constraint = "periodic", nknots = 10, + tau = .5, lambda = -1, method = "quantile") Searching for optimal lambda. This may take a while. While you are waiting, here is something you can consider to speed up the process: (a) Use a smaller number of knots; (b) Set lambda==0 to exclude the penalty term; (c) Use a coarser grid by reducing the argument 'lambda.length' from the default value of 25. The algorithm has converged. You might plot() the returned object (which plots 'sic' against 'lambda') to see if you have found the global minimum of the information criterion so that you can determine if you need to adjust any or all of 'lambda.lo', 'lambda.hi' and 'lambda.length' and refit the model. > summary(co.o50.) COBS smoothing spline (degree = 2) from call: cobs(x = day, y = speed, constraint = "periodic", nknots = 10, method = "quantile", tau = 0.5, lambda = -1, knots.add = TRUE) {tau=0.5}-quantile; dimensionality of fit: 7 from {14,13,11,8,7,30} x$knots[1:10]: 0.999635, 41.000000, 82.000000, ... , 366.000365 lambda = 101002.6, selected via SIC, out of 25 ones. coef[1:12]: 1.121550e+01, 1.139573e+01, 1.089025e+01, 9.954427e+00, 8.148158e+00, ... , 5.373106e-04 R^2 = 8.22% ; empirical tau (over all): 3287/6574 = 0.5 (target tau= 0.5) > summary(pc.5 <- predict(co.o50., interval = "both")) z fit cb.lo cb.up Min. : 0.9996 Min. : 7.212 Min. : 6.351 Min. : 7.951 1st Qu.: 92.2498 1st Qu.: 7.790 1st Qu.: 7.000 1st Qu.: 8.600 Median :183.5000 Median : 9.436 Median : 8.555 Median :10.326 Mean :183.5000 Mean : 9.314 Mean : 8.388 Mean :10.241 3rd Qu.:274.7502 3rd Qu.:10.798 3rd Qu.: 9.716 3rd Qu.:11.787 Max. :366.0004 Max. :11.290 Max. :10.347 Max. :13.416 ci.lo ci.up Min. : 6.782 Min. : 7.598 1st Qu.: 7.370 1st Qu.: 8.213 Median : 8.974 Median : 9.901 Mean : 8.830 Mean : 9.798 3rd Qu.:10.197 3rd Qu.:11.311 Max. :10.797 Max. :12.366 > > showProc.time() Time (user system elapsed): 2.83 0.017 3.206 > > if(doExtra) { ## + repeat.delete.add + co.o50.. <- cobs(day,speed, knots.add = TRUE, repeat.delete.add=TRUE, + constraint = "periodic", nknots = 10, + tau = .5, lambda = -1, method = "quantile") + summary(co.o50..) + showProc.time() + } > > co.o9 <- ## Compute the .9 quantile smoothing B-spline + cobs(day,speed,knots.add = TRUE, constraint = "periodic", nknots = 10, + tau = .9,lambda = -1, method = "uniform") Searching for optimal lambda. This may take a while. While you are waiting, here is something you can consider to speed up the process: (a) Use a smaller number of knots; (b) Set lambda==0 to exclude the penalty term; (c) Use a coarser grid by reducing the argument 'lambda.length' from the default value of 25. Error in x %*% coefficients : NA/NaN/Inf in foreign function call (arg 2) Calls: cobs -> drqssbc2 -> rq.fit.sfnc -> %*% -> %*% Execution halted Flavor: r-devel-linux-x86_64-fedora-clang