Towards the design of a social-inspired module for the decision making of nodes in an ad hoc network

Authors

  • John Edwar González Universidad Nacional de Colombia, Bogotá
  • Jorge Eduardo Ortiz Universidad Nacional de Colombia, Bogotá
  • Henry Zárate Ceballos Universidad Nacional de Colombia, Bogotá

DOI:

https://doi.org/10.18046/syt.v14i36.2212

Keywords:

Ad hoc network, decision-making, node, resources.

Abstract

This article presents the state of the art derived from a research project where the construction of a software module related with the capability of the wireless nodes to decide whether or not to enter an ad hoc network, is proposed. If the decision is to enter, the amount of resources needed to provide the net is assessed by analyzing data provided for the network about the resources available and the number of nodes and internal parameters (CPU, hard disk, and processor, among others) through a mathematical model. The module developed should interact with an interpreter at a lower level and with a higher level entity, a distributed system. The research is supported by the computational system of the TLÖN group of the Universidad Nacional de Colombia, where its main purpose is to study the application of a social-inspired paradigm in ad hoc networks.

Author Biographies

  • John Edwar González, Universidad Nacional de Colombia, Bogotá

    Electronics Engineer at the Universidad Surcolombiana of Neiva; currently, he is studying for a Masters in Telecommunications Engineering at the Universidad Nacional de Colombia and he is also a member of the TLÖN research group. He is working on a project for the inclusion of a social-inspired paradigm in ad hoc networks. His work is centered on the inclusion of the decision-making capacity of the nodes in these kinds of networks.

  • Jorge Eduardo Ortiz, Universidad Nacional de Colombia, Bogotá

    PhD. Systems Engineer, MSc in Statistical Sciences, and MSc in Telecommunications Engineering. MSc in Philosophy and Ph.D in Systems Engineering and Computation. His interest areas are ad hoc networks, simulations of linear regressions based on genetic algorithms, and artificial intelligence.

  • Henry Zárate Ceballos, Universidad Nacional de Colombia, Bogotá

    MSc. Electronic Engineer and MSc in Telecommunications of the Universidad Nacional de Colombia. His professional interests are focused on ad hoc and mesh networks as a medium to generate convergent systems in emergency situations. He is an active member of the TLÖN research group.

References

Bagchi, R. & Davis, D. F. (2016). The role of numerosity in judgments and decision-making. Curr. Opin. Psychol., 10, 89-93.

Bitam, S., Mellouk, A., & Zeadally, S. (2014). Bio-inspired routing algorithms survey for vehicular ad hoc networks. IEEE Communications Survey Tutorials, 17(2), 843-867.

Buchegger, S., & Le Boudec, J. Y. (2005). Self-policing mobile ad hoc networks by reputation systems. IEEE Communications Magazine, 43(7), 101-107.

Chowdhury, F. N. (1993). Decision making with neural networks. In Proceedings of Southeastcon ’93. IEEE.

Dudkowski, D. Marrón, P. J. & Rothermel, K. (2006). An efficient resilience mechanism for data centric storage in mobile ad hoc networks. In Proceedings - IEEE International Conference on Mobile Data Management. IEEE. doi:10.1109/MDM.2006.33

Economides, A. A. & Silvester, J. A. (1991). Multi-objective routing in integrated services networks: A game theory approach. In INFOCOM ’91. Proceedings. Tenth Annual Joint Conference of the IEEE Computer and Communications Societies. Networking in the 90s (pp. 1220-1227). IEEE

Fitzek, F. & Katz, M. (2014). Mobile clouds: Exploiting distributed resources in wireless, mobile and social networks. New Delhi, India: PUB.

Gebali, F. (2009). Cross-Layer Modeling of Wireless Ad Hoc Networks in the Presence of Channel Noise. In Global Telecommunications Conference, 2009. GLOBECOM 2009. IEEE.

Hatzivasilis, G. & Manifavas, C. (2012). Building trust in ad hoc distributed resource-sharing networks using reputation-based systems. In Proceedings of the 2012 16th Panhellenic Conference on Informatics, PCI 2012 (pp. 416–421). IEEE.

Johnson., D, Aichele, C., & Ntlatlapa, N. (2008). Simple pragmatic approach to mesh routing using BATMAN. In 2nd IFIP International Symposium on Wireless Communications and Information Technology in Developing Countries, CSIR, Pretoria, South Africa, 6-7 October (p. 10).

Kumar-Sarkar, S., Basavaraju, T., & Puttamadappa, C. (2013). Ad Hoc mobile wireless network: principles, protocols and applications. Boca Raton, FL: CRC.

Lindner, M., Wunderlich, S., & Eckelmann, S. (2011). B.A.T.M.A.N (Better Approach to Mobile Ad-Hoc Network) [online]. Retrieved from: http://www.open-mesh.org

Loo, J., Lloret, J., & Hamilton, J. (2012). Mobile ad hoc networks: current status and future trends. Boca Raton, FL: CRC.

Lu, S., Miao, Q., & Fang, J. (2008). Effects of network topology on decision-making in a biological network model. In First International Conference on Intelligent Networks and Intelligent Systems, 2008. ICINIS ’08 (pp. 197-200).

Luce, R. D. & Raiffa, H. (1989). Games and decisions: Introduction and critical survey. New York, NY: Dover.

Maldonado, C.E. & Gómez, N.A. (2011). Sistemas bio-inspirados: un marco teórico para la ingeniería de sistemas complejos. Bogotá, Colombia: Universidad del Rosario.

Miura-ko, R., Yolken, B., Mitchel, J., & Bambos, N. (2008). Security decision-making among interdependent organizations. In IEEE 21st. Computer Security Foundations Symposium, 2008. CSF ’08 (pp. 66-80). IEEE.

Monk, S. (2013). Raspberry Pi cookbook: Software and hardware problems and solutions. Sebastopol, CA: O’Reilly Media.
Nagel, T. (1973). Rawls on justice. Philosophical Review, 82(2), 220-234.

Ni, J. & Yang, S.X. (2011). Bioinspired neural network for real-time cooperative hunting by multirobots in unknown environments. IEEE Transactions in Neural Networks, 22(12), 2062-2077.

Niswar, M., Sabri, A., Warni, E., Musa, M. (2013). Memory sharing management on virtual private server. In 2013 International Conference on ICT for Smart Society (ICISS). IEEE. doi:10.1109/ICTSS.2013.6588079

Oehlman, F. (2011). Simulation of the ‘Better Approach to Mobile Adhoc Networking Protocol (thesis). Technische Universit¨at Munchen: Germany.

OpenWrt Community (2016). OpenWrt: Wireless Freedom [online]. Retrieved from: . [Accessed: 02-Mar-2016].http://openwrt.org

Orozco, A.M. & Llano, G. (2014). OSA: a vanet application focused on fuel saving and reduction of CO2 emissions. Sistemas & Telemática, 12(9), 25-47.

Orozco, A.M., Llano, G., & Michoud, R. (2012). Redes vehiculares Ad-hoc: aplicaciones basadas en simulación. Ingenium, 6(12), 11-22.

Ortiz-Triviño, J. & Ospina-López, J. P. (2015). Caracterización de un clúster y sus recursos en una red Ad Hoc a partir de la distribución geométrica truncada. Revista Universidad Santo Tomás, 12(1), 68-75.

Ortiz-Triviño, J. E. & Hernández,G. (2011). Cálculo de algunas medidas estadísticas para evaluar el desempeño de redes Ad Hoc. Ingeniería y Competitividad, 8( 1), 15-21.

Raspbian Community (2012). Raspbian [online].Retrieved from: https://www.raspbian.org/

Ray, S., Carruthers, J.B., & Starobinski, D. (2005). Evaluation of the masked node problem in ad hoc wireless LANs. IEEE Transactions in Mobile Computing, 4(5), 430-442.

Rezaei, B.A., Sarshar, N., & Roychowdhury, V. P. (2010). Distributed resource sharing in low-latency wireless ad hoc networks. IEEE/ACM Transactions on Networking, 18(1), 190-201.

Rosen, R. (2014).Linux kernel networking: Implementation and theory. New York, NY: Apress.

Rosenblum, M. (2004). The reincarnation of virtual machines. Queue, 2(5), 34.

Roughgarden, T. (2010). Algorithmic game theory. Commununications of the ACM, 53(7), 78.

Saaty, T. L. (1990). How to make a decision: The analytic hierarchy process. Eur. J. Oper. Res., 48(1), 9-26.

Salehi, M. J., Khalaj, B. H., Katz, M., Fazelnia, G., Karimi, P., & Del Ser, J. (2012). Mobile clouds: How to find opportunities. In 2012 IEEE 17th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD) ( pp. 170-172). IEEE.

Stewart and, A. J. & Plotkin, J. B. (2013). From extortion to generosity, evolution in the Iterated Prisoner’s Dilemma. Proceedings of the National Academy of Sciences, 110(38), 15348-15353.

Támara, l.J. & Alzate, M.A. (2011). Control of admission for Ad Hoc mobile network based on estimates available bandwidth. Bogotá, Colombia: PUB.

Texas Instruments [TI] (2016). BeagleBoard [online]. Retrieved from: https://beagleboard.org/black

Thanapal, P. & Saleem-Durai, M.A. (2014). A survey of mobile cloud computing for extending energy of mobile devices. Appl. Mech. Mater., 573, 549-555.

Toh, C. K., Kim, D., Oh, S., & Yoo, H. (2010, February). The controversy of selfish nodes in ad hoc networks. In 2010 The 12th International Conference on Advanced Communication Technology (ICACT), (Vol. 2, pp. 1087-1092). IEEE.

Turocy, T. L. & Von-Stengel, B. (2003). Game theory. In Encyclopedia of Information Systems (pp. 403-420). London, UK: Academic Press.

Tversky, A. & Shafir, E. (1992). Choice under conflict: The dynamics of deferred decision. Psychol. Sci., 3(6), 358-361.

Tversky, A. (1972). Elimination by aspects: A theory of choice. Psychol. Rev., 79(4), 281-299.

Villalba, L.J.G., Canas, D.R., & Orozco, A.L.S. (2010). Bio-inspired routing protocol for mobile ad hoc networks. IET Communications, 4(18), 2187-2195.

Wang, S. H. & Archer, N. PO. (1998). A neural network based fuzzy set model for organizational decision making. IEEE Transactions on Systems, Man, and Cybernetics: Part C (Applications& Reviews), 28(2), 194-203.

Ward, B. (2014). How Linux works: What every superuser should know [2a ed.]. San Francisco, CA: No Starch Press.

Xu, J., Wang, L., Li, Y., Qin, Z., & Zhu, M. (2011). An experimental study of BATMAN performance in a campus deployment of wireless mesh networks. In Proceedings - 2011 7th International Conference on Mobile Ad-hoc and Sensor Networks, MSN 2011 (pp. 341-342). IEEE.

Zadeh, L.A. (1996). Fuzzy logic = computing with words. IEEE Transactions in Fuzzy Systems, 4(2), 103-111.

Zarate-Ceballos, H. & Ortiz-Triviño, J. E. (2012). Mesh networks, communications emergency response. Int. J. Eng. Technol., 2(2), 509-514.

Zarate-Ceballos, H., Sánchez-Cifuentes, J.F., Ospina-López, J.P., & Ortiz-Triviño, J.E. (2015). Sistema de telecomunicaciones social-inspirado mediante comunidades de agentes. In Congreso Internacional de Computación Colombia-México, 2015 (pp. 56-63). Bogotá, Colombia: Fabbecor

Downloads

Published

2016-03-30

Issue

Section

Reviews