Simulation of delay in data transmission in a cellular network due to Handoff
DOI:
https://doi.org/10.18046/syt.v11i27.1694Keywords:
Cellular networks, numerical simulation, vehicular and wireless technologies.Abstract
This paper presents the outputs of numerical simulation of the effect of a mobile device's speed in delay of data transmission in a cellular network, because of Handoff. Code generation and simulations was done using Matlab's development environment. As a result, the responses of cellular network system by varying the parameters of mobile speed and time of completion of the test were analysed, and a model of the proposed system for determining the delay based on these two parameters was obtained.
References
Emmelmann, M. (2005). Influence of velocity on the handover delay associated with a radio-signal-measurement-based handover decision. En VTC-2005-Fall. 2005 IEEE 62nd Vehicular Technology Conference, 2005. (Vol. 4, pp. 2282–2286). Piscataway, NJ: IEEE. doi:10.1109/VETECF.2005.1558955
Goldsmith, A. (2005). Wireless communications. Cambridge, UK: Cambridge University. doi:10.1017/CBO9780511841224
Hernández, G., & Ortíz, J.E. (2011, October 13). Cálculo de algunas medidas estadísticas para evaluar el desempeño de redes Ad Hoc. Ingeniería y Competitividad, 8(1), 15-21. Disponible en http://bibliotecadigital.univalle.edu.co/handle/10893/1602
Istepanian, R.S.H., Woodward, B., & Richards, C.I. (2001). Advances in telemedicine using mobile. Engineering in Medicine and Biology Society, 4, 3556–3558
Li, W., Member, S., Chen, H., & Agrawal, D.P. (2005). Performance analysis of handoff schemes with preemptive and non preemptive channel borrowing in Integrated Wireless Cellular Networks. IEEE Transactions on Wireless Communications, 4(3), 1222–1233
Lin, C.E. (2003). A real-time remote control architecture using mobile communication. IEEE Transactions on Instrumentation and Measurement, 52(4), 997–1003. doi:10.1109/TIM.2003.814813
Lin, Y. (1997). Impact of PCS handoff response time. IEEE Communications Letters, 1(6), 160–162
Miaou, S., & Huang, C. (2001). A next-generation mobile telemedicine testbed based on 3G cellular standard. En Computers in Cardiology 2001, (V.2, pp.683–686). Piscataway, NJ: IEEE
Prabhakaran, P. & Sankar, R. (2006). Impact of realistic mobility models on wireless networks performance. IEEE International Conference on Wireless and Mobile Computing,
Networking and Communications, 2006. [WiMob’2006], (pp. 329-334). Piscataway, NJ: IEEE. doi:10.1109/WIMOB.2006.1696343
Qiao, L. & Koutsakis, P. (2009). Fair and efficient scheduling for telemedicine traffic transmission over wireless cellular networks. VTC Spring 2009 - IEEE 69th Vehicular Technology Conference, (pp. 1–5). Piscataway, NJ: IEEE. doi:10.1109/VETECS.2009.5073552
Radio, N., & Zhang, Y. (2012). Next-generation applications on cellular networks: trends, challenges, and solutions. Proceedings of the IEEE, 100(4), 841-854
Tranter, W., Shanmugan, K., Rappaport, T., & Kosbar, K. (2003). Principles of communication systems simulation with wireless applications. Upper Saddle River, NJ: Prentice Hall
Ulukus, S. & Pollini, G. (1998). Handover delay in cellular wireless systems. En 1998. ICC 98. Communications 1998 [ICC'98], IEEE International Conference on, Conference Record. (V.3, pp.1370–1374). Piscataway, NJ: IEEE
Downloads
Published
Issue
Section
License
This journal is licensed under the terms of the CC BY 4.0 licence (https://creativecommons.org/licenses/by/4.0/legalcode).